
Assessing NoSQL Databases for Telecom
Applications

Francisco Cruz
HASlab

Universidade do Minho
Braga, Portugal

fmcruz@di.uminho.pt

Pedro Gomes
HASlab

Universidade do Minho
Braga, Portugal

pedrogomes@lsd.di.uminho.pt

Rui Oliveira
HASlab

Universidade do Minho
Braga, Portugal

rco@di.uminho.pt

José Pereira
HASlab

Universidade do Minho
Braga, Portugal

jop@di.uminho.pt

Abstract—The constant evolution of access technologies are
turning Internet access more ubiquitous, faster, better and
cheaper. In connection with the proliferation of Internet access,
Cloud Computing is changing the way users look at data, moving
from local applications and installations to remote services,
accessible from any device. This new paradigm presents numer-
ous opportunities that even traditional businesses like telecoms
cannot ignore, in particular, enabling new and more cost effective
solutions to old problems.

The work presented in this paper provides a detailed descrip-
tion of how a telecom application can be migrated to a NoSQL
database. Particularly, by pointing out the necessary change of
how we reason about data as well as the data structures that
support it, in order to take full advantage of Cloud Computing.
In addition, we also present a preliminary evaluation of different
data persistency paradigms based on a fully tunable simulation
platform that mimics the operation of a telecom business.

Index Terms—Cloud Computing; Distributed Databases;
NoSQL; Telecom;

I. INTRODUCTION

The constant evolution of access technologies, wired as
the optical fiber, or wireless such as the WiMAX and LTE
are turning Internet access more and more ubiquitous, faster,
better and cheaper. The proliferation of Internet access allows
users to use services directly provided by it, which results
in a change of paradigm for the use of applications and
how users communicate, popularizing the paradigm known as
Cloud Computing (CC). In a CC environment, the majority
of applications, as well as data, do not need to be installed
or stored on the user’s computer, as they are provided by the
“cloud” through dedicated service providers, also known as
Cloud Providers (CPs). The Cloud Provider is responsible,
for example, for the storage, maintenance and backup of all
user information, and the user just has to access the platform
provided by the CP and only pay for the services she uses and
when she needs them [1] – a concept known as pay-as-you-go.

The new paradigm implies the access of millions of users
to the same application and partly as a result, storage of
digital data has reached unprecedented levels [6]. A good
example of such a applications are the social networking
platforms like Facebook and MySpace, that have to deal
with millions of requests everyday. But, traditional relational
databases, RDBMS (Relational Database Management Sys-
tem), seem to be not well suited for these environments. Con-

sequently, the major online players searched for alternatives
into building extreme large scale storage systems and the
result was a great set of different data stores popularly called
NoSQL: Dynamo [4], PNUTS [3], BigTable [2], Cassandra [5],
DataDroplets [7], among others. Such data stores provide
high availability and elasticity in a distributed environment
composed by a set of commodity hardware, avoiding the need
to invest in very powerful and expensive servers to host the
database. In addition, these data stores automatically provide
replication, fail-over, load balancing and data distribution.
Nevertheless, when compared to the more mature RDBMS,
NoSQL databases have some fundamental limitations that
should be taken into account. They provide high scalability at
the expense of a more relaxed data consistency model and only
provide primitive querying and searching capability. Imposing
an additional complexity to the application.

This work aims at assessing how these solutions can be
adapted to the business model of telecommunication operator.
As with other large enterprises, telecommunications enter-
prises tend to rely on very centralised systems, and the field
of CC offers an innovative and important opportunity in terms
of new concepts and paradigms. Thus, this paper describes the
process of modelling required for the transition of a relational
model to a non-relational one, in the context of managing
customer data, services and telephone calls.

The remainder of this paper is organized as follows. Section
2 presents the data model used for the simulation platform.
Section 3 describes the process and differences between using
a RDBMS and a NoSQL database. Section 5 and 6 present
the workload used to benchmark the system, in order evaluate
and compare the relational approach and the non-relational
approach. Section 7 concludes the paper.

II. DATA MODEL

In its core, the system presented here is responsible for
the data management and the business decisions related to
customers information in relation to incoming calls. During
runtime, it handles the incoming calls, fetching the caller’s
information and subscribed services to know if they are valid
and how should they be treated (tariff cost, discounts, etc.).

In order to support this system, the telecom’s data model
is composed of 7 entities (Fig. 1): Customer, Bucket, Bucket

Bucket Type

Tariff plan

Info (tariff per minute, etc)

Priority
Use period

Id

Customer

Service

1...*

1...*

Bucket

Expiration date

Balance

* 1...**

1

1...*

Number (Network Id)
Priority

Subscribed Service

Account
0...1

1...*

*

1

*

Fig. 1: Telecom’s data model.

Type, Subscribed Service, Service, Account and Tariff Plan.
The Customer entity bears the personal information regard-

ing each of the telecom’s customers. In addition, this entity is
related to the entity Account in the sense that a customer can
be associated with one or more accounts.

The Bucket entity represents the balance associated with
each account and each bucket type. The Bucket Type holds
information related to the type of buckets existent in the system
(money, SMS, etc).

As it can be inferred from its name, the Subscribed Service
entity represents the services subscribed by each customer. In
addition to the phone number, the account identifier and the
service name, this entity also contains a priority field, which
is used to select the most advantageous service.

With regard to the Service entity, it maps service names
into service types. The latter’s attribute, similarly to Bucket
Type, is a finite set of possible type of services provided by
the telecom, for instance, voice or text messaging.

The entity Account plays a central role in this model, it
contains as attributes the identification of the account, the
customer identification and also a tariff plan identification.
In addition, it introduces the concept of hierarchy between
accounts. By way of explanation, when a set of accounts have a
shared balance, it is introduced the notion of a parent account.
Each account can be associated at most with a single parent
account.

From the assumption that different services may use differ-
ent types of bucket, there is a relationship between Services
and Bucket Type. Therefore, the entity Tariff Plan establishes
this relationship by mapping service names into bucket types
for each plan identification. In addition, it also provides a
priority field and informations about the plan, such as the
period of use or the cost per minute.

III. DATA STORE

A telecom has to deal with millions of requests everyday
and as with other large enterprises, they tend to rely on very
centralised systems for data storage. Whenever the need for
more capacity arises, the solution is always to acquire a new,
more powerful and expensive server i.e. scaling vertically.

However, the Cloud Computing paradigm has already proven
that scaling horizontally offers the desired scalability and
availability. In fact, scalability is achieved by adding new
machines to the system on demand, in order to cope with
the load in the system, and at the same time can provide
fault-tolerance, ensuring availability. Besides, it is more cost-
effective because it relies on commodity hardware and allows
a granular adaptation from small to large scenarios.

For this case study, it was considered two different data
stores: PostgreSQL and Cassandra. This choice is related
to one of the contributions of this work: to show how a
telecom’s data management system can be ported to a NoSQL
database, oriented towards a CC environment. Additionally,
PostgreSQL represents the typical approach using relational
database management systems (RDBMS) and, thus, will serve
as term of comparison.

In the platform, each incoming call is composed of four
main phases: 1) the first phase evaluates what services the
user has subscribed verifying each one in the priority order
until a valid one is found; 2) in the second phase the tariff
plan is queried to assess what types of buckets can be used;
3) the third phase concerns the discovery of the account that
contains such entity, in fact a client can have a service in
association with a company that supports some of her costs.
4) the last phase consists of a bucket subtraction i.e. a balance
update, being this the only phase that cannot be easily moved
to Cassandra due to its transactional requirements.

We select the first phase of this process, the choice of
services, as an example for the migration process presented
next. This operation has the following input and output.

Input: The caller number and the type of incoming call.
Output: The available list of services and the account identi-

fication associated with them, ordered by priority.

A. PostgreSQL

Based on the normal relational approach, the data was then
analysed and the queries were built upon it. The data model
showed in Figure 1 is in fact no more than a conceptual
entity-relationship model and, thus was easily implemented
in PostgreSQL. As a result, the schema of the database
is composed of the same 7 relations, with the respective
attributes.

Based in this model, the specific queries for each one of
the phases was then created and implemented with JDBC.
In order to achieve maximum performance, several runs of
the simulation were carefully analysed resulting in some
optimisations. Namely, some queries were rewritten and were
also introduced secondary indexes over some attributes.

Looking at the presented example, its implementation in this
data stores assumes the following form:
SELECT SubscribedService.account_id, SubscribedService.name
FROM SubscribedService
JOIN Service
ON Service.service_name = SubscribedService.name
AND Service.service_type = Type

WHERE SubscribedServ.number = Id
ORDER BY SubscribedServ.priority DESC

This query, which represents the relational approach to the
problem, was then optimized with indexes over some of the
presented fields in the SubscribedService and Service.

B. Cassandra

Initially developed at Facebook to support the social net-
working application, Cassandra is, by definition, a highly avail-
able distributed data store that encompasses concepts from
Dynamo’s architecture and the data model from BigTable.

Moreover, Cassandra’s data model implements a variant of
the entity-attribute-value (EAV) model and can be thought of
as a multi-dimension sorted map. The Keyspace is a namespace
for ColumnFamilies, which in turn map rows to a set of
columns. In fact, there is a rough correspondence between
a ColumnFamily and a table in the relational model, but
they differ on the property that within a ColumnFamily each
row can have a completely different set of columns. As a
result, there is no pre-defined schema so columns can be
added dynamically. There is yet another higher data structure
SuperColumnFamilies where each of its attribute columns (in
this structure named SuperColumns) can have a list of ordinary
columns. Within a ColumnFamily and a SuperColumnFamily,
both columns and supercolumns can be ordered according to
their names, using one of the following supported criteria:
ASCII, UTF-8, Long, UUID or binary ordering.

The differences between the two paradigms also imply a
different approach in application development. In contrast to
the relational paradigm, when designing an application with
a NoSQL database as back-end one should not start from
defining the data model but from the features that are intended
for the system. As a result, the development process of the
Cassandra’s interface was fundamentally different. For each
of the presented phases, it was analysed both the input and
the output desired, then the ColumnFamilies or SuperColumn-
Familes were created, so that from the input, the desired output
was easily obtained.

For the presented example, in the implementation process a
SuperColumnFamily was created with the row key being the
caller number and the name of the SuperColumn being the
type of incoming call. Then, each SuperColumn has a list of
columns corresponding to the list of available services and the
account identification associated with them. These columns are
ordered by priority. An example of the structure is depicted
in Figure 2. In the migration of this phase and also in the
remaining, the same method is used, where the queries based
on Joins are translated to data structures where data is naturally
indexed.

In terms of consistency, this is not a major concern in this
study since customers’ accounts are usually independent from
each other, i.e. isolation is provided by the characteristics of
the case study. The nature of the data that is in most cases
rarely written also helps in this process, where such operations
as the services’ subscription can be implemented based on
a system of delayed confirmations. With such techniques,
services are activated and used even before the client is aware

965416789

963593939
sms

voice
2

1 voice
1

1 family

1
1 community

2
1 sms

sms

voice
2

1 voice
1

1 work

1
1 sms

Row key SuperColumns

Column
Priority

Account
id

Service
Name

Fig. 2: SuperColumnFamily representing the choice of ser-
vices.

of such fact, or when she removes a service, it can still be
active for some moments even after the confirmation is given.

However, in the case where two or more accounts share
a bucket i.e. have a shared balance, a stronger consistency
criteria would be needed to prevent simultaneous concurrent
updates of the balance. Even if such services only affect in
average 10% of the population, they still need full transactional
guarantees (ACID). There are, for this problem, two main
possible solutions: (i) a hybrid approach where the bulk of
data would be stored in Cassandra, except for data related
to the shared buckets; (ii) using an external entity to restrict
concurrent accesses to the shared bucket. The isolation of
the bucket in a separated database or different code wrapper
is however straightforward as this entity is only used in a
restricted phase of incoming calls process.

IV. PLATFORM AND WORKLOADS

In order to test and compare the relational and non re-
lational solutions, a simulation platform for benchmarking
of the system was developed. More than just a workload
execution platform, it allows for the generation of consistent
data to populate the underlying database and the definition
of operations to simulate different scenarios of use. Trying to
mimic the real world, this platform allows the manipulation of
several factors that affect the users’ behaviour, such as their
relationships and the associated services or their call history.

There were created different execution scenarios in order
to simulate different periods of use, where the load and
type of requests vary. With the implementation of several
typical telecom services based in list of families or time based
discounts we define their coverage over the population and its
effect over the user. Many more parameters are available such
as the type of incoming calls that are given to the platform,
or the importance of the client’s call history in the incoming
calls formation.

Based on this set of parameters, there were created 2 distinct
workloads: a Day workload representing the regular load
during a day with more focus on business activities and a
Christmas workload that simulates the Christmas holidays.

0 100 200 300 400 500 600 700 800
Time (s)

100000

120000

140000

160000

180000

200000

220000

240000

260000

In
it

ia
te

d
 c

a
lls

cassandra
postgres

(a)

0 100 200 300 400 500 600 700 800
Time (s)

100000

150000

200000

250000

300000

350000

400000

In
it

ia
te

d
 c

a
lls

cassandra
postgres

(b)

Fig. 3: Initiated calls - 7 000 000 customers

V. EXPERIMENTATION

A series of preliminary experiments were conducted to eval-
uate the performance of both data stores. These experiments
cover the 2 defined workloads in a population of 7 million
customers. Regarding the experiments setting, the simulation
platform was run on a 8-core, 16GB RAM machine being the
data stores limited to a single 24-core, 128GB RAM machine,
with disks in RAID1.

The main goal of this experiment is to simulate a small
country and for that purpose, the total number of generated
calls reaches two million. During the execution time, the
Day workload uses 160 execution clients that make 5 minute
calls. The think time is 10 milliseconds and the number of
simultaneous calls is 20 000, and thus, each execution client
has to establish 12 500 calls. In the Christmas workload the
think time is 0 seconds to simulate a higher load.

Figure 3 shows that in this experiment the non-relational
data store achieves better results at the level of the number
of initiated calls. These numbers were as expected since
no transactional guarantees are offered in Cassandra and no
external mechanism was implemented at this point. Even if the
results are promising, there is a need for a further evaluation
of the scalability of both approaches, being the Cassandra
solution complemented with a transactional mechanism or a
ACID compliant database.

VI. CONCLUSION

With the appearance of the Cloud Computing paradigm and
facing an ever-changing market, new data stores developed
by Internet giants emerge. In this context, this work aims at
assessing how NoSQL data stores could be adapted to the
business model of a telecommunications enterprise.

In that purpose it was developed a implementation of a tele-
com application over two distinct paradigms and a simulation
platform based on human activity that allow the creation of dis-
tinct workloads to test it. With implementations in PostgreSQL
and Cassandra, a resume of the differences between the
different models were shown in terms of development methods
and some preliminary results. Even if at this point they are
more favorable to the non relational paradigm, the platform
needs to be executed in a distributed environment to test the
capability of the system to scale progressively. In fact the value
of this implementation would be not in its raw performance but
advantages like the increased adaptability of the system and
the associated cost reductions. Nonetheless, the non-relational
paradigm requires an optimization of data structures, requiring
data de-normalization and pre-materialization of the results not
supporting also transactional operations, that is a fault that we
intend to tackle in the future.

In the long term, this work intends to evaluate if the non-
relational paradigm can be advantageous even in a business
model like a telecom. However, it should be noted that the
transition to CC is not easy, and the documentation of this
extra effort is also a valuable result.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Commun. ACM, 53:50–58, April 2010.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed
storage system for structured data. ACM Trans. Comput. Syst., 26:4:1–
4:26, June 2008.

[3] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohan-
non, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s
hosted data serving platform. Proc. VLDB Endow., 1:1277–1288, August
2008.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
amazon’s highly available key-value store. In Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles, SOSP ’07,
pages 205–220, New York, NY, USA, 2007. ACM.

[5] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage
system. SIGOPS Oper. Syst. Rev., 44:35–40, April 2010.

[6] D. Skillicorn. The case for datacentric grids. Technical Report ISSN-
0836-0227-2001-451, Department of Computing and Information Sci-
ence, Queen’s University, November 2001.

[7] R. Vilaça, F. Cruz, and R. Oliveira. On the expressiveness and trade-offs
of large scale tuple stores. In R. Meersman, T. Dillon, and P. Herrero,
editors, On the Move to Meaningful Internet Systems, OTM 2010, volume
6427 of Lecture Notes in Computer Science, pages 727–744. Springer
Berlin / Heidelberg, 2010.

