
Evaluating Data Freshness in
Large Scale Replicated Databases?

Miguel Araújo and José Pereira

Universidade do Minho

Abstract. There is nowadays an increasing need for database replica-
tion, as the construction of high performance, highly available, and large-
scale applications depends on it to maintain data synchronized across
multiple servers. A particularly popular approach, used for instance by
Facebook, is the MySQL open source database management system and
its built-in asynchronous replication mechanism. The limitations imposed
by MySQL on replication topologies mean that data has to go through
a number of hops or each server has to handle a large number of slaves.
This is particularly worrisome when updates are accepted by multiple
replicas and in large systems.
It is however difficult to accurately evaluate the impact of replication in
data freshness, since one has to compare observations at multiple servers
while running a realistic workload and without disturbing the system
under test. In this paper we address this problem by introducing a tool
that can accurately measure replication delays for any workload and then
apply it to the industry standard TPC-C benchmark. This allows us to
draw interesting conclusions about the scalability properties of MySQL
replication.

Keywords: Databases, Replication, MySQL, Data Freshness

1 Introduction

With the rapid growth of the Internet, availability has recently became critical
due to large amounts of data being captured and used each day with the emerg-
ing online services. Large companies such as Google, eBay, or Amazon handle
exabytes of data per year. Facebook claims to be one of the largest MySQL
installations running thousands of servers handling millions of queries, comple-
mented by its own Cassandra data store for some very specific queries. These
Internet-based services have become a standard in our information society, sup-
porting a wide range of economic, social, and public activities. And in this glob-
alized era, since large organizations are present in different places all over the
world, information must be always online and available. The loss of information
or its unavailability can lead to serious economic damages. So, high-availability,
performance, and reliability are all critical requirements in such systems.
? Partially funded by project ReD – Resilient Database Clusters (PDTC / EIA-EIA

/ 109044 / 2008).

Both of these challenges are commonly addressed by means of the same tech-
nique, namely data replication. Application components must be spread over a
wide area network, providing solutions that enable high availability through net-
work shared contents. Since databases are more and more deployed on clusters
and over wide area networks, replication is a key component. Replicating data
improves fault-tolerance since the failure of a site does not make a data item
inaccessible. Available sites can take over the work of failed ones. And also im-
proves performance since data access can be localized over the database network,
i.e. transaction load is distributed across the replicas, achieving load balancing,
and in the other hand it can be used to provide more computational resources, or
allow data to be read from closer sites reducing the response time and increasing
the throughput of the system.

There are however several different replication protocols, differing first and
foremost whether propagation takes place within transaction boundaries [3]: Lazy
schemes use separate transactions for execution and propagation, in contrast to
eager schemes that distribute updates to replicas in the context of the origi-
nal updating transaction. Thus, the eager method makes it easy to guarantee
transaction properties, such as serializability but, since such transactions are
distributed and relatively long-lived, the approach does not scale well [2]. On
the other hand, lazy replication reduces response times as transactions can be
executed and committed locally and only then propagated to other sites [4]. In
detail, being replicated asynchronously, data is first written on the master server
and then is propagated to slaves, and so, specially in the case of hundreds of
servers, slaves will take some time to obtain the most recent data. Lazy propa-
gation thus opens up the possibility of having stale data in replicas and makes
data freshness a key issue for correctness and performance.

Most database management systems implement asynchronous master-slave
replication. The systems provide mechanisms for master-slave replication that
allows configuring one or more servers as slaves of another server, or even to
behave as master for local updates. MySQL in particular allows almost any
configuration of master and slaves, as long as each server has at most one master.
As described in Section 2, this usually leads to a variety of hierarchical replication
topologies, but includes also a ring which allows updates to be performed at any
replica, as long as conflicts are avoided.

It is thus interesting to assess the impact of replication topology in MySQL,
towards maximizing scalability and data freshness. This is not however easy to
accomplish. First, it requires comparing samples obtained at different replicas
and thus on different time referentials, or, when using a centralized probe, net-
work round-trip has to be accounted for. Second, the number of samples that
can be obtained has to be small in order not to introduce a probing overhead.
Finally, the evaluation should be performed while the system is running a real-
istic workload, which makes it harder to assess the point-in-time at each replica
with a simple operation. In this paper we address these challenges by making
the following contributions:

– We describe a tool that obtains a small number of samples of log sizes using
a centralized probe at different points in time. It then selects particularly
interesting periods of time and computes a freshness value with the distance
between lines fitted to these points.

– We apply the tool to two representative MySQL configurations with a vary-
ing number of replicas and increasingly large workloads using the industry
standard TPC-C on-line transaction processing benchmark [1]. This allows
us to derive conclusions on the scalability of MySQL replication.

The rest of the paper is structured as follows: Section 2 describes the MySQL
replication architecture in detail. In Section 3, the method and tool used to
achieve this goal is presented. Section 4 presents the results obtained and Sec-
tion 5 concludes the paper.

2 Background

MySQL, as most database management systems do, implements asynchronous
master-slave replication. It allows configuring each server as slave of any other
server while simultaneously behaving as master for local updates. The config-
uration of replication allows an arrangement of masters and slaves in different
topologies and it is possible to replicate the entire server, replicate only certain
databases or to choose what tables to replicate.

2.1 Replication Mechanism

The replication mechanism of MySQL, works at a high level in a simple three-
part process:

1. The master records changes to its data in its binary log (these records are
called binary log events).

2. The slave copies the master’s binary log events to its own log (relay log).
3. The slave replays the events in the relay log, applying the changes to its own

data.

Briefly, after writing the events to the binary log, the master tells the storage
engine to commit the transactions. The next step is for the slave to start an I/O
thread to start the dump. This process reads events from the master’s binary
log. If there are events on the master, the thread writes them on the relay log.
Finally, a thread in the slave called SQL thread reads and replay events from
the relay log, thus updates slave’s data to match the master’s data. To notice
that the relay log usually stays in the operating system’s cache, having very low
overhead.

This replication architecture decouples the processes of fetching and replaying
events on the slave, which allows them to be asynchronous. That is, the I/O
thread can work independently of the SQL thread. It also places constraints
on the replication process, the most important of which is that replication is

(a) Master and multiple slaves (b) Ring

(c) Chain (d) Tree

Fig. 1. Sample MySQL replication topologies.

serialized on the slave. This means updates that might have run in parallel (in
different threads) on the master cannot be parallelized on the slave, which is a
performance bottleneck for many workloads.

2.2 Replication Topologies

The simplest topology besides Master-Slave is Master and Multiple Slaves
(Figure 1(a)). In this topology, slaves do not interact with each other at all, they
all connect only to the master. This is a configuration useful for a system that
has few writes and many reads. However, this configuration is scalable to the
limit that the slaves put too much load on the master or network bandwidth
from the master to the slaves becoming a problem.

Other possible configuration is Master-Master in Active-Active Mode.
This topology involves two servers, each configured as both a master and slave
of the other. The main bottleneck in this configuration resides on how to handle
conflicting changes.

A variation on master-master replication that avoids the problems of the pre-
vious is the Master-Master in Active-Passive mode replication. The main
difference is that one of the servers is a read-only ”passive” server. This configu-
ration permits swapping the active and passive server roles back and forth very

easily, because the servers configurations are symmetrical. This makes failover
and failback easy.

The related topology of the previous ones is Master-Master with Slaves.
The advantage of this configuration is extra redundancy. In a geographically
distributed replication topology, it removes the single point of failure at each
site.

One of the most common configuration in database replication, is the Ring
topology (Figure 1(b)). A ring has three or more masters. Each server is a slave of
the server before it in the ring, and a master of the server after it. This topology
is also called circular replication. Rings do not have some of the key benefits of a
master-master setup, such as symmetrical configuration and easy failover. They
also depend completely on every node in the ring being available, which greatly
increases the probability of the entire system failing. And if you remove one of
the nodes from the ring, any replication events that originated at that node can
go into an infinite loop. They will cycle forever through the topology, because
the only server that will filter out an event based on its server ID is the server
that created it. In general, rings are brittle and best avoided. Some of the risks
of ring replication can be decreased by adding slaves to provide redundancy at
each site. This merely protects against the risk of a server failing, though.

Another possibility, regarding some certain situations where having many
machines replicating from a single server requires too much work for the master,
or the replication is to spread across a large geographic area that chaining the
closest ones together gives better replication speed, is the Daisy Chain (Figure
1(c)). In this configuration each server is set to be a slave server to one machine
as as master to another in a chain. Again, like the ring topology the risk of losing
a server can the decreased by adding slaves to provide redundancy at each site.

The other most common configuration is the Tree or Pyramid topology
(Figure 1(d)). This is very useful in the case of replicating a master to a very
large number of slaves. The advantage of this design is that it eases the load on
the master, just as the distribution master did in the previous section. The dis-
advantage is that any failure in an intermediate level will affect multiple servers,
which would not happen if the slaves were each attached to the master directly.
Also, the more intermediate levels you have, the harder and more complicated
it is to handle failures.

2.3 Data Freshness

Data replication must ensure ACID properties and copy consistency must be
preserved through global isolation [6]. To ensure global isolation a transaction
that modifies data must update all its copies before any other transaction can
access the data. Property known as 1-copy serializability. This property can be
ensured with synchronous replication, in which a transaction updates all repli-
cas, enforcing the mutual consistency of all replicas. However, this replication
model increases the transaction latency because extra messages are added to the
transaction (distributed commit protocol).

On the other hand, lazy replication updates all the copies in separate trans-
actions, so the latency is reduced in comparison with eager replication. A replica
is updated only by one transaction and the remain replicas are updated later on
by separate refresh transactions [7].

Although there are concurrency control techniques and consistency criterion
which guarantee serializability in lazy replication systems, these techniques do
not provide data freshness guarantees. Since transactions may see stale data,
they may be serialized in an order different from the one in which they were
submitted.

So, asynchronous replication leads to periods of time that copies of the same
data diverge. Some of them have already the latest data introduced by the last
transaction, and others have not. This divergence leads to the notion of data
freshness: The lower the divergence of a copy in comparison with the other
copies already updated, the fresher is the copy [5].

MySQL replication is commonly known as being very fast, as it depends
strictly on the the speed that the engine copies and replays events, the network,
the seize of the binary log, and time between logging and execution of a query [8].
However, there have not been many systematic efforts to precisely characterize
the impact on data freshness.

One approach is based on the use of a User Defined Function returning the
system time with microsecond precision [8]. Inserting this function’s return value
on the tables we want to measure and comparing it to the value on the respective
slave’s table we can obtain the time delay between them. But this measurements
can only be achieved on MySQL instances running on the same server due to
clock inaccuracies between different machines.

A more practical approach uses a Perl script and the Time::HiRes module to
get the system time with seconds and microseconds precision.1 The first step is
to insert that time in a table on the master, including the time for the insertion.
After this, the slave is queried to get the same record and immediately after
the attainment of it the subtraction between system’s date and time got from
the slave’s table is made, obtaining the replication time. As with the method
described above this one lacks of accuracy due to the same clock inaccuracies.

3 Measuring Propagation Delay

3.1 Approach

Our approach is based on using a centralized probe to periodically query each
of the replicas, thus discovering what has been the last update applied. By
comparing such positions, it should be possible to discover the propagation delay.
There are however several challenges that have to be tackled to obtain correct
results, as follows.

1 http://datacharmer.blogspot.com/2006/04/measuring-replication-speed.html

Master

Slave

Monitor

Fig. 2. Impossibility to probe simultaneously master and slaves.

x

o

x

o
ox

o
o

x

x
sample

o - slave
x - master

Lo
g

po
s i

tio
n

Time

Fig. 3. Log position over the time

Measuring updates. The first challenge is to determine by how much two replicas
differ and thus when two replicas have applied exactly the same amount of
updates. Instead of trying to compare database content, which would introduce
a large overhead, or using a simple database schema and workload that makes
it easy, we use the size of the transactional log itself. Although this does not
allow us to measure logical divergence, we can determine when two replicas are
exactly with the same state.

Non-simultaneous probing. The second challenge is that, by using a single cen-
tralized probe one cannot be certain that several replicas are probed at exactly
the same time. Actually, as shown in (Figure 2), if the same monitor periodically
monitors several replicas it is unlikely that this happens at all. This makes it
impossible to compare different samples directly.

Instead, as shown in (Figure 3) we consider time–log position pairs obtained
by the monitor and fit a line to them (using the least-squares method). We can
then compute the distance of each point obtained from other replicas to this line
along the time axis. This measures how much time such replica was stale.

Master

Slave

Monitor

Fig. 4. Sampling twice without updates erroneously biases the estimate.

Eliminating quiet periods. Moreover, as replication traffic tends to be bursty. If
one uses repeated samples of a replica that stands still at the same log position,
the estimate is progressively biased towards a (falsely) higher propagation delay,
as shown in (Figure 4). This was solved by selecting periods where line segments
obtained from both replicas have a positive slope, indicating activity.

Dealing with variability. Finally, one has to deal with variability of replication
itself and over the network used for probing. This is done by considering a
sufficient amount of samples and assuming that each probe happens after half of
the observed round-trip. Moreover, a small percentage of the highest round-trips
observed is discarded, to remove outliers.

3.2 Implementation

An application to interrogate the master instance and several replicas of the
distributed database scheme was developed. This tool stores the results in a file
for each instance. To obtain the log position it uses the MySQL API in order to
obtain the replication log position. The temporal series of observed log positions
are then stored in separate files, one for each node of the distributed database.

Results are then evaluated off-line using the Python programming language
and R statistics package. This script filters data as described and then adjusts
a line to the values of the log files and compares them. This includes looking for
periods of heavy activity and fitting line segments to those periods. With these
line segments, the script compares each slave points with the corresponding
segment on the master, if the segment does not exist for the selected point,
the point is ignored. In the end, average is calculated based on the difference
of values between slave points and corresponding segments on the master. A
confidence interval can also be computed, using the variance computed from the
same data.

4 Experiments

4.1 Workload

In order to assess the distributed database used in the case study, we have chosen
the workload model defined by TPC-C benchmark [1], a standard on-line trans-
action processing (OLTP) benchmark which mimics a wholesale supplier with a
number of geographically distributed sales districts and associated warehouses.
Specifically, we used the Open-Source Development Labs Database Test Suit 2
(DBT-2), a fair usage implementation of the specification.

Although TPC-C includes a small amount of read-only transactions, it is
composed mostly by update intensive transactions. This choice makes the master
server be almost entirely dedicated to update transactions even in a small scale
experimental setting, mimicking what would happen in a very large scale MySQL
setup in which all conflicting updates have to be directed at the master while
read-only queries can be load-balanced across all remaining replicas.

Each client is attached to a database server and produces a stream of trans-
action requests. When a client issues a request it blocks until the server replies,
thus modeling a single threaded client process. After receiving a reply, the client
is then paused for some amount of time (think-time) before issuing the next
transaction request. The TPC-C model scales the database according to the
number of clients. An additional warehouse should be configured for each addi-
tional ten clients. The initial sizes of tables are also dependent on the number
of configured clients.

During a simulation run, clients log the time at which a transaction is sub-
mitted, the time at which it terminates, the outcome (either abort or commit)
and a transaction identifier. The latency, throughput and abort rate of the server
can then be computed for one or multiple users, and for all or just a subclass of
the transactions. The results of each DBT-2 run include also CPU utilization,
I/O activity, and memory utilization.

4.2 Setting

Two replication schemes were installed and configured. A five machines topology
of master and multiple slaves, and a five machine topology in daisy chain.

The hardware used included six HP Intel(R) Core(TM)2 CPU 6400 - 2.13GHz
processor machines, each one with one GByte of RAM and SATA disk drive. The
operating system used is Linux, kernel 2.6.31-14, from Ubuntu Server, and the
database engine used is MySQL 5.1.39. All machines are connected through a
LAN, and are named PD01 to PD06. Being PD01 the master instance, PD04
the remote machine in which the interrogation client executes, and the others
the slave instances.

The following benchmarks were done using the workload TPC-C with the
scale factor (warehouses) of two, number of database connections (clients) one
hundred and the duration of twenty minutes.

Replica PD02 PD03 PD05 PD06

Number of samples 15238 15121 15227 15050
Average delay (µs) 10133 10505 10249 10260
99% confidence interval (±) 363 373 412 378

Table 1. Results for master and multiple slaves topology with 100 clients.

0

1100

2200

3300

4400

5500

6600

7700

8800

9900

11000

Clients

PD02 PD03 PD05 PD06

D
el

ay
 A

ve
ra

ge
 (
µs
)

20 40 60 80 100

Fig. 5. Scalability of master and multiple slaves topology.

4.3 Results

Results obtained with 100 TPC-C clients and the master and multiple slaves
topology are presented in (Table 1). It can be observed that all replicas get
similar results and that the propagation delay is consistently measured close to
10 ms with a small variability. This represents an upper bound on the worst case
scenario staleness that a client can observe by reading from the master and any
other replica if the replication connection is operational.

Results with an different numbers of TPC-C clients can be found in (Figure
5). They show that propagation delay grows substantially with the load imposed
on the master. At the same time, as idle periods get less and less frequent due
to the higher amount of information to transfer, the probability of a client being
able to read stale data grows accordingly.

Results obtained with 100 TPC-C clients and the chain topology are pre-
sented in (Table 2). In contrast to master and multiple slaves, the delay now
grows as the replica is farther away for the master. This configuration also gives
an indication of how the ring topology would perform: As any replica would

Replica PD02 PD03 PD05 PD06

Number of samples 12423 12819 12937 14004
Average delay (µs) 12353 19767 25698 30688
99% confidence interval (±) 557 700 864 984

Table 2. Results for chain topology with 100 clients.

0

3200

6400

9600

12800

16000

19200

22400

25600

28800

32000

20 40 60 80 100

PD02 PD03 PD05 PD06

Clients

D
el

ay
 A

ve
ra

ge
 (
µs
)

Fig. 6. Scalability of the chain topology.

be, on average, half way to other masters, one should expect the same delay as
observed here on replicas PD03 and PD05.

Results with an increasing number of TPC-C clients can also be found in
(Figure 6), showing that propagation delay still grow substantially with the load
imposed on the master. This means that using the ring configuration for write
scalability with suffer the same problem, thus limiting its usefulness.

5 Conclusions

Asynchronous, or lazy, database replication is often the preferred approach for
achieving large scale and highly available database management systems. In
particular, the replication mechanism in MySQL is at the core of some of the
largest databases in use today for Internet applications. In this paper we set
out to evaluate the consequences on data freshness of the choice of replication
topologies and of a growing workload.

In short, our approach measures freshness in terms of time required for up-
dates performed at the master replica to reach each slave while using a realistic
update-intensive workload, as the proposed tool can infer freshness from a small
number of samples taken at different points in time at different replicas. Ex-
perimental results obtained with this tool show that, in both tested replication
topologies, the delay grows with the workload which limits the amount of up-
dates that can be handled by a single replica. Moreover, we can also conclude
that in circular replication the delay grows as the number of replicas increases,
which means that spreading updates across several replicas does not improve
update scalability. Finally, the delay grows also with the number of slaves at-
tached to each master, which means that read scalability can also be achieved
only at the expense of data freshness.

The conclusion is that the apparently unlimited scalability of MySQL using
a combination of different replication topologies can only be achieved at the
expense of an increasing impact in data freshness. The application has thus to
explicitly deal with stale data in order to minimize or prevent the user from
observing inconsistent results.

References

1. Transaction Processing Performance Council. TPC BenchmarkTM C standard spec-
ification revision 5.11, February 2010.

2. K. Daudjee and K. Salem. Lazy database replication with ordering guarantees.
Proceedings of the 20th International Conference on Data Engineering (ICDE 2004),
30:424–435, 2004.

3. J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and
a solution. Proceedings of the 1996 ACM SIGMOD international conference on
Management of data, page 173, 1996.

4. B. Kemme. Database replication for clusters of workstations. PhD thesis, Technische
Wissenschaften ETH Zürich, Zürich, 2000.

5. C. Le Pape, S. Gancarski, and P. Valduriez. Data quality management in a database
cluster with lazy replication. Journal of Digital Information Management (JDIM),
3(2), 2005.

6. M. Özsu and P. Valduriez. Distributed and parallel database systems. ACM Com-
puting Surveys (CSUR), 28(1):125–128, 1996.

7. E. Pacitti, P. Minet, and E. Simon. Fast algorithms for maintaining replica con-
sistency in lazy master replicated databases. Research Report RR-3654, INRIA,
1999.

8. B. Schwartz, J. D. Zawodny, D. J. Balling, V. Tkachenko, and P. Zaitsev. High Per-
formance MySQL: Optimization, Backups, Replication, and More; 2nd ed. O’Reilly,
2008.

