
Evaluating Certification Protocols in the
Partial Database State Machine∗

A. Sousa, A. Correia Jr., F. Moura, J. Pereira, R. Oliveira

Abstract

Partial replication is an alluring technique to ensure the
reliability of very large and geographically distributed
databases while, at the same time, offering good perfor-
mance. By correctly exploiting access locality most trans-
actions become confined to a small subset of the database
replicas thus reducing processing, storage access and com-
munication overhead associated with replication.

The advantages of partial replication have however to
be weighted against the added complexity that is required
to manage it. In fact, if the chosen replica configuration
prevents the local execution of transactions or if the over-
head of consistency protocols offsets the savings of locality,
potential gains cannot be realized. These issues are heavily
dependent on the application used for evaluation and ren-
der simplistic benchmarks useless.

In this paper, we present a detailed analysis of Partial
Database State Machine (PDBSM) replication by compar-
ing alternative partial replication protocols with full repli-
cation. This is done using a realistic scenario based on a
detailed network simulator and access patterns from an in-
dustry standard database benchmark. The results obtained
allow us to identify the best configuration for typical on-line
transaction processing applications.

Keywords: Distributed Databases, Replication, Group
Communication, Performance Evaluation.

1 Introduction

Database replication based on group communication has
recently been the subject of several research efforts [?, ?,
?, ?, ?]. These have shown that scalability and perfor-
mance limitations of traditional database replication proto-
cols, mostly involving distributed locking and atomic com-
mitment [?], can be overcome by taking advantage of order
and atomicity properties of reliable multicast as offered by
group communication [?]. In contrast to the so called lazy

∗ Research funded by EU, GORDA project (FP6-IST/004758).

or asynchronous replication strategies often implemented in
commercial products, it preserves 1-copy serializability [?].

One solution using this approach is the Database State
Machine (DBSM) [?]. Briefly, each transaction request is
optimistically executed by a single replica. Upon enter-
ing the committing stage, the outcome of the transaction
is propagated to all replicas using an atomic multicast pro-
tocol. A certification procedure is run upon delivery by
all replicas to determine whether the transaction should be
committed or aborted due to conflicts with other concur-
rently executed transactions. Total order and the determin-
ism of the certification procedure ensure strong consistency.
As deterministic execution is confined to the certification
procedure, no restrictions impairing performance are im-
posed on scheduling during the execution stage.

The DBSM is a full replication protocol: It assumes that
the outcome of each transaction is multicast to all replicas,
which have entire copies of the database on which the cer-
tification procedure can be run. On the other hand, partial
replication is done by splitting the database according to
the application semantics and then by replicating each frag-
ment at a subset of the available replicas. During certifi-
cation, it is expected that replicas are only bothered with
those fragments that are stored locally. This means how-
ever that replicas might fail to recognize conflicts related to
fragments which are not locally available. Different replicas
would therefore be able to decide differently and become
inconsistent.

This is unfortunate, since partial replication is invaluable
for the scalability and performance of very large and ge-
ographically distributed databases. Fragmentation allows
less relevant data items to be replicated by fewer replicas.
Access locality allows data items to be kept close to those
replicas that need them more often. Therefore, if each trans-
action needs only a small subset of all replicas to execute
and commit, the processing, storage access and communi-
cation overhead associated with replication can be reduced.

The DBSM can be extended for partial replication [?] by
adding a third stage to the protocol. After certification, each
replica collects votes from at least a representative from
each fragment accessed by the transaction. The transac-

1

tion is allowed to commit only if no conflicts happen in any
of the fragments, guaranteeing strong consistency. The ad-
vantages of partial replication have however to be weighted
against the added complexity that is required to manage it.
In fact, if the chosen configuration does not allow transac-
tions to execute locally or if the overhead of consistency
protocols offsets the savings of locality, potential gains can-
not be realized.

In this paper, we address this issue by presenting
a detailed analysis of the Partial Database State Ma-
chine (PDBSM) replication. For this, we compare the orig-
inal DBSM protocol with (i) a partial replication protocol
in which full certification is performed by all replicas and
(ii) a partial replication protocol with the additional voting
phase.

The trade-offs involved are however heavily dependent
on the application used for evaluation, thus rendering sim-
plistic benchmarks useless. Namely, depending on how the
database is fragmented and on transaction profiles, the over-
head of full certification might compare differently with
the voting phase. Our approach is thus to use a realistic
scenario based on a detailed network simulator [?] and ac-
cess patterns from the industry standard TCP-C [?] database
benchmark. The results obtained allow us to identify the
best configuration for typical on-line transaction processing
applications, as well as to precisely characterize the trade-
offs involved, thus gathering valuable knowledge on how to
fragment the database.

The rest of this paper is structured as follows: Section
2 introduces some important definitions such as the system
model, and the distributed data environment. In Section 3
we present an execution model of the Partial Database State
Machine along with two alternative termination protocols.
In Section 4, we describe the simulation model, the work-
load pattern used (TPC-C) and analyze the simulation re-
sults. In Section 5, we present related work and we con-
clude in Section 6.

2 System Model and Definitions

We consider a distributed system composed of two
completely connected sets S = {s1, ..., sn} and C =
{c1, ..., cm}, respectively of database replicas and clients.
They communicate through message passing. The system
is asynchronous in that we make no assumptions about the
time it takes for a replica to execute a step nor the time it
takes for messages to be transmitted.

Replicas may only fail by crashing and we do not rely
on replica recovery for correctness. We assume that our
asynchronous model is augmented with a failure detector
oracle [?] so that Atomic Multicast and View Synchronous
Multicast [?] are implementable.

2.1 Databases and Transactions

A relational database DB = {R1, . . . , Rs} is a set of
relations Ri ⊆ D1 × . . . × Dq defined over data sets not
necessarily distinct. Each element (d1, d2, ..., dq) of a rela-
tion Ri is called a tuple and each di is called an attribute.
To uniquely identify each tuple of a relation, we assume the
existence of a minimum nonempty set of attributes, called
the primary key.

The relations of the database can be fragmented horizon-
tally and vertically by means of two operators. The horizon-
tal fragmentation of a relation Ri corresponds to a selection
and can be defined as H(Ri, σ) = {t | t ∈ Ri ∧ σ(t)}. The
vertical fragmentation of Ri is a projection of the relation
over a set of attributes and can be defined as V (Ri, J) =
{tJ |t ∈ Ri} such that tJ =< . . . , dj , . . . >j∈J .

We consider a distributed relational database as a rela-
tional database whose relations are distributed among the
set S of database replicas. This distributed database is given
by DDB ⊆ DB × S.

Clients submit transaction requests to database replicas.
A transaction represents a sequence of operations of the re-
lational algebra [?, ?], followed by a commit or abort oper-
ation. The result of executing a transaction is a sequence of
reads and writes of tuples. The read set of a transaction t,
denoted by RS(t), is the set of primary keys identifying the
tuples read by t. Its write set, WS(t), is the set of primary
keys identifying the tuples written by t, and WV (t), called
write values, the set of tuples written by t.

2.2 The Database State Machine

The Database State Machine [?] is based on the de-
ferred update replication technique [?] which reduces the
need for distributed coordination among concurrent transac-
tions during their execution. Using this technique, a trans-
action is locally synchronised during its execution at the
database where it initiated according to some concurrency
control mechanism [?] (e.g., two-phase locking, multiver-
sion). From a global point of view, the transaction execution
is optimistic since there is no coordination with any other
database replica possibly executing some concurrent trans-
action. Interaction with other database replicas on behalf
of the transaction only occurs when the client requests the
transaction commit. At this point, a termination protocol is
started: i) the transaction write values, read and write sets
are atomically propagated to all database replicas, and ii)
each database replica certifies the transactions determining
its fate: commit or abort.

The DBSM provides 1-copy-serializability [?] as its con-
sistency criteria. To ensure the same sequence of committed
transactions at all database replicas the technique requires
transactions to be: i) executed only once, and its write val-

2

ues applied to all replicas, ii) totally ordered and, iii) deter-
ministically certified and committed.

In order for a database replica to certify a committing
transaction t, the replica must be able to determine which
transactions conflict with t. A transaction t′ conflicts with t
if: i) t and t′ have conflicting operations and ii) t′ does not
precede t.

Two operations conflict when they are issued by different
transactions, access the same data item and at least one of
them is a write operation. The precedence relation between
transactions t and t′ is denoted t′ → t (i.e., t′ precedes t)
and defined as: i) if t and t′ execute at the same database
replica, t′ precedes t if t′ enters the committing state before
t; or ii) if t and t′ execute at different replicas, for exam-
ple si and sj , respectively, t′ precedes t if t′ commits at si

before t enters the committing state at si.

3 Partially Replicated Database State Ma-
chine

Releasing the assumption that each database replica con-
tains a full copy of the database, directly impacts both the
execution and the certification of transactions. In this sec-
tion, we address the issues raised by partial replication in
the Partial Database State Machine (PDBSM). In detail, we
address the execution model and two possible termination
protocols that deal with partial replication, with either inde-
pendent or coordinated certification.

3.1 Transaction Execution

From the time it starts until it finishes, a transaction
passes through some well-defined states. A transaction is
considered to be in the executing state as soon as the re-
quest is received by the executing replica and until a commit
operation is issued. The transaction then enters the commit-
ting state and the distributed termination protocol is started.
Like in DBSM, we consider that the replica executing the
transaction is able to locally complete the execution of a
transaction.

In a PDBSM scenario we should consider the distributed
processing of t among a set of replicas that together contain
all the fragments accessed by t. We have chosen to not in-
clude this possibility here as, in a well fragmented database
this should happen rarely, and we do not intend to measure
the impact of distributed execution on transaction latency.

3.2 Termination Protocol

An issue of major impact for the PDBSM is how the re-
sults of the transaction processing are handled. While in the
DBSM, the whole set of write values, read and write sets are

relevant to all database replicas, in a fragmented database
this is no longer true. On the contrary, the fragmentation
of the database is meant to exploit data and operation lo-
cality and therefore the propagation of write values should
be restricted to the replicas replicating the involved frag-
ments. This is done by the executing replica when entering
the committing phase.

With respect to the read and write sets, however, it is not
obvious whether they should be propagated to all database
replicas or just to those containing the relevant fragments.
Indeed, this directly influences the certification phase and
establishes a trade-off between network usage and protocol
latency. If the whole read and write sets of the transaction
are fully propagated, then it will enable each replica to in-
dependently certificate the transaction. Otherwise, if each
replica is provided with only the parts of the read and write
sets regarding the replica’s fragments, then it can only make
a partial judgement and the transaction certification requires
a final coordination among all replicas (i.e, voting phase).
In the following we detail these two termination protocols
and in Section 4 we evaluate them.

3.2.1 Independent Certification

With the propagation of the whole read and write sets to all
database replicas, we adopt a termination protocol similar to
that of the DBSM, in which each replica can independently
certify the transactions.

On entering the committing phase the executing replica,
after sending the write values to the replicas replicating
them, atomically multicast the transaction’s read and write
sets to all database replicas. This message totally orders
the certification of t. Upon delivery of this message, along
with the write set of previously certified transactions, each
replica has the necessary knowledge to certify t. If t passes
the certification test, all write values of t are applied to the
database and t passes to the committed state. Otherwise, t
passes to the aborted state. Transactions in the executing
sate holding locks on data items updated by t are aborted
when t commits.

The cost of independent certification is given by the cost
in network bandwidth of propagating the whole read and
write sets to all replicas, plus the cost of keeping this write
set while required for the certification of pending transac-
tions, and finally the cost of certifying the whole transaction
at each replica. From these, the main concern is actually on
the network usage. The write set of a transaction t can be
discarded as soon as t is known to precede every pending
transaction, that is, any transaction in the executing or com-
mitting state. The difference in the cost of doing total or
partial certification is almost negligible.

3

3.2.2 Coordinated Certification

On the other hand, to fully exploit data locality we restrict
the propagation of the transaction read and write sets to the
database replicas replicating the corresponding fragments.
The knowledge required to certify a transaction becomes it-
self fragmented and each replica may only be able to certify
part of the transaction. Therefore, a final coordination pro-
tocol is required.

Once again, after sending the write values, the execut-
ing replica atomically multicasts a message to all replicas
to totally order the certification of t. Upon the delivery
of this message, each database replica sj certifies t against
the fragments it replicates and votes on a Resilient Atomic
Commitment (RAC) [?] protocol to decide the final state of
t. This protocol allows participants to decide commit even
if some of the replicas of a fragment read or written by the
transaction are suspected to have failed. Resilient Atomic
Commit satisfies the same agreement and termination prop-
erties of Weak Non-Blocking Atomic Commit [?] and is de-
fined as follows:

• Agreement: No two participants decide differently.

• Termination: Every correct participant eventually de-
cides.

• Validity: If a replica decides commit for t, then for
each fragment accessed by t there is at least a replica
si replicating it that voted yes for t.

• Non-triviality: If for each fragment accessed by t
there is at least a replica si replicating it that votes yes
for t and is not suspected, then every correct replica
eventually decides commit for t.

If the outcome of the RAC is commit, then all write val-
ues of t are applied to the database and t passes to the com-
mitted state. Otherwise, t passes to the aborted state. If t
commits, at each replica, transactions in the executing state
holding locks on data items updated by t are aborted.

Under the assumption that each fragment is replicated by
a replica that does not fail, the RAC protocol is trivially im-
plemented by having each replica multicasting its vote [?].
A replica decides upon receiving a vote from at least a rep-
resentative of each database fragment.

3.2.3 Implementation Issues

In this section, we point out several optimizations to the
PDBSM termination protocols. We chose to present them
separately to avoid cluttering the description of the proto-
cols with performance oriented concerns. All of these opti-
mizations were included in our prototypes and contribute to
the experience results presented in Section 4.

In order to allow independent certification and ensure 1-
copy-serializability every database replica must have access
to both read and write sets [?]. However, sometimes it be-
comes prohibitive to send the read set due to its large size.
This issue can be circumvented by the definition of a per re-
lation threshold, above which it is assumed that the read set
corresponds to the entire relation. This solution can enor-
mously reduce network bandwidth consumption and trans-
action latency, at the cost of possibly increasing the number
of transaction aborts due to the coarser grain in conflict de-
tection.

4 Experimental Results

In this section, we use a simulation model to compare a
fully replicated DBSM with a partially replicated one using
the PDBSM. We start by briefly describing the simulation
model and the traffic used. Afterwards we present and dis-
cuss the results.

4.1 Simulation Model

To evaluate the protocols we use a hybrid simulation
environment that combines simulated and real compo-
nents [?]. The key components, the replication and the
group communication protocols, are real implementations
while both the database engine and the network are simu-
lated.

In detail, we use a centralized simulation runtime based
on the standard Scalable Simulation Framework (SSF) [?],
which provides a simple yet effective infrastructure for
discrete-event simulation. Simulation models are built as li-
braries that can be reused. This is the case of the SSFNet [?]
framework, which models network components (e.g. net-
work interface cards and links), operating system compo-
nents (e.g. protocol stacks), and applications (e.g. traffic
analyzers). Complex network models can be configured us-
ing these components, mimicking existing networks or ex-
ploring particularly large or interesting topologies.

To combine the simulated components with the real im-
plementations the execution of the real software compo-
nents is timed with a profiling timer [?] and the result is used
to mark the simulated CPU busy during the corresponding
period, thus preventing other jobs, real or simulated, to be
attributed simultaneously to the same CPU. The simulated
components are configured according to the equipment and
scenarios chosen for testing.

The database server handles multiple clients and is mod-
eled as a scheduler and a collection of resources, such as
storage and CPUs, and a concurrency control module.

Each transaction is modeled as a sequence of operations:
i) fetch a data item; ii) do some processing; iii) write back a

4

data item. Upon receiving a transaction request each op-
eration is scheduled to execute on the corresponding re-
source. The processing time of each operation is previously
obtained by profiling a real database server.

A database client is attached to a database server and pro-
duces a stream of transaction requests. After each request is
issued, the client blocks until the server replies, thus model-
ing a single threaded client process. After receiving a reply,
the client is then paused for some amount of time (thinking
time) before issuing the next transaction request.

To determine the read-set and write-set of a transac-
tion’s execution, the database is modeled as a set of his-
tograms [?]. The transactions’ statements are executed
against this model and the read-set, write-set and write-
values are extracted to build the transaction model that is
injected into the database server. In our case, this modeling
is rather straightforward as the database is very well defined
by the TPC-C [?] workload that we use for all tests. More-
over, as all the transactions specified by TPC-C can be re-
duced to SPJ queries, the read-set extraction is quite simple.

4.2 Application Profile

Each database request is generated according to the
TPC-C benchmark [?]. TPC-C is the industry standard on-
line transaction processing benchmark. It mimics a whole-
sale supplier with a number of geographically distributed
sales districts and associated warehouses. TPC-C specifies
a precise set of relations (Warehouse, District, Customer,
Item, Stock, Orders, OrderLine, NewOrder and History)
and the size of the database as a function of the number
of desired clients. The benchmark determines 10 clients
per warehouse and, as an example, for 2000 clients, the
database contains around 109 tuples, each ranging from 8
to 655 bytes. The traffic is a mixture of read-only and up-
date intensive transactions. A client can request transac-
tions of five different types: NewOrder, adds a new order
into the system (with 44% of the occurrences); Payment, up-
dates the customer’s balance, district and warehouse statis-
tics (44%); OrderStatus, returns a given customer latest or-
der (4%); Delivery, records the delivery of products (4%);
StockLevel, determines the number of recently sold items
that have a stock level below a specified threshold (4%).
The NewOrder, Payment and Delivery are update transac-
tions while the others are read-only.

The database model has been configured using the trans-
actions’ processing time of a profiled version of Post-
greSQL 7.4.6 under the TPC-C workload. From the TPC-C
benchmark we only use the specified workload, the con-
straints on throughput, performance, screen load and back-
ground execution of transactions are not taken into account.

4.3 Resource Analysis

We outline in this section an analysis of resource con-
sumption, namely, bandwidth, storage and processor, for
the termination protocols presented. The network is com-
posed of a wide area network (WAN) with moderate band-
width and high latency, aggregating several (n) local area
networks (LANs), each with several (m) replicas, with
much higher bandwidth and much lower latency. We as-
sume that all the replicas of a fragment are in a LAN and
thus admit that the bandwidth requirements for data prop-
agation between copies of the same fragment are irrelevant
when compared with the effect of traffic crossing long dis-
tance links.

The transactions read set, write set, and write values have
been divided in two subsets: (i) a subset of fully replicated
data items called RSG, WSG and WVG, and (ii) a subset
containing partially replicated items called RSL, WSL and
WVL. We represent byRAC the amount of data exchanged
among the replicas during the execution of the RAC proto-
col.

The following formulas present the amount of data,
crossing the LAN boundaries, that has to be transferred
among replicas while executing the termination protocols
proposed:

DBSM ≡
m.(n−1)∑

i=1

(RSGi +WSGi) +
m.(n−1)∑

i=1

(RSLi +WSLi)

+
m.(n−1)∑

i=1

(WVGi) +
m.(n−1)∑

i=1

(WVLi)

(1)

PDBSM ≡
m.(n−1)∑

i=1

(RSGi
+WSGi

) +
m.(n−1)∑

i=1

(RSLi
+WSLi

)

+
m.(n−1)∑

i=1

(WVGi)

(2)

PDBSM + RAC ≡
m.(n−1)∑

i=1

(RSGi
+WSGi

) +
m.(n−1)∑

i=1

(WVGi
) +RAC

(3)

Comparing formulas 1 and 2, it can be easily seen that,
in the proposed network setting, the PDBSM protocol using
independent certification has lower data consumption as the
write values of local fragments are only distributed locally
never crossing the long distance links.

5

Similarly, from formulas 1 and 3, the PDBSM protocol
using coordinated certification is expected to outperform the
DBSM protocol as long as the RAC’s required data does not
exceed the requirements for propagating the read and write
sets, and the write values of partially replicated fragments:

PDBSM+ RAC < DBSM⇒

RAC <

m.(n−1)∑
i=1

(RSLi
+WSLi

) +
m.(n−1)∑

i=1

(WVLi
)

Finally, formulas 2 and 3, reveal that coordinated certi-
fication is preferable when the data required for the RAC
does not exceed that for transmitting the read and write sets
of partially replicated fragments:

PDBSM+ RAC < PDBSM⇒

RAC <

m.(n−1)∑
i=1

(RSLi +WSLi)

Until now we have concentrated in data requirements,
but we should also pay attention to the expected latencies
of the protocols. Every protocol broadcasts the transac-
tion using an atomic broadcast protocol. As this proto-
col propagates the messages concurrently with the order-
ing mechanism, we expect that it will mask the differences
in latency that should happen due to message size and in
some cases to the designed termination protocol. For ex-
ample, the PDBSM with RAC protocol regardless of using
the RAC implementation offering the lowest cost in terms
of latency [?], incurs in the additional overhead of the RAC
and could present higher latencies.

Furthermore, while observing storage requirements, it is
possible to conclude that partial replication, both PDBSM
and PDBSM with RAC, outperforms the original DBSM
approach. As each replica does not need to be concerned
with all the write values, this reduces storage activities and
possible bottlenecks. This is an important consideration
when considering systems’ scalability. The reasoning is that
expansions are usually realized with the addition of more
database replicas. This should increase the number of si-
multaneous transactions and therefore the activities of each
individual storage, which may not be prepared to handle the
additional writes. The same formulas used to analyze the
network bandwidth consumption may also be used to deter-
mine the storage activities.

The processor does not represent a concern, regarding
the extra activities produced by the replication processes,
as in the full or partial DBSM “all transaction activities are
executed locally”. Only upon the commit being issued, the
“transaction” updates are propagated to the other replicas.
Even the certification procedure, that could increase the pro-
cessor load, is not a problem, since the read and write sets

are upgraded to coarser grains when a threshold is achieved,
avoiding a laborious certification and also bandwidth con-
sumption.

4.4 Results

In the experiences we are conducting, we consider a
WAN scenario, with 9 replicas. It consists of 3 LANs (with
1Gbps bandwidth and 120µs latency) each with 3 repli-
cas. LANs are connected by a network with a bandwidth of
100Mbps and a latency of 60ms. Each replica corresponds
to a dual processor AMD Opteron at 2.4GHz with 4GB of
memory, running the Linux Fedora Core 3 Distribution with
kernel version 2.6.10. For storage we used a fiber-channel
attached box with 4, 36GB SCSI disks in a RAID-5 config-
uration and the Ext3 file system.

For all the experiments, we varied the total of clients
from 20 to 100 and distributed them evenly among the repli-
cas.

The simulation results are separated in resource con-
sumption (Figure 1), expressed in terms of storage and CPU
load, and user results (Figure 2), denoted as abort rate, la-
tency and tpm. The storage load represents amount of data
waiting to be served. The CPU load denotes the percentage
of the time that the CPU is busy.

As shown in Figure 1, the number of clients used is not
enough to fully use the available CPU time. As expected, it
makes little difference whether DBSM or PDBSM is used.
In contrast, storage is fully occupied and thus increasing
queues are formed. Also as expected, the amount of queu-
ing is larger with DBSM. The usage of partial replication
results in an obvious economy of resources.

5 Related Work

Most of previous work on database replication using
group communication [?, ?, ?, ?] concentrates on full repli-
cation strategies. Along with the assumption of the deter-
ministic processing of transactions at every replica, the re-
sulting protocols, characterized as non voting [?], take ad-
vantage of not requiring a final agreement protocol.

To the best of our knowledge, the works in [?, ?, ?, ?]
are the only ones to consider partial database replication.
Alonso in [?] discusses future trends for partial database
replication based on atomic broadcast, stating that solutions
for full replicated scenarios may not be solutions for par-
tially replicated ones. The work in [?] considers an object-
oriented database and uses group communication primitives
to immediately broadcast read operations to all replicas of
an item, and broadcast all write operations along with the
transaction commit request. Transaction atomicity is en-
sured by a final atomic commit protocol. By contrast, we
eliminate replica interaction during transaction processing

6

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 20 40 60 80 100

A
ve

ra
ge

 L
oa

d

Number of Clients

DBSM
PDBSM

PDBSM+RAC

(a) CPU

 0

 1

 2

 3

 4

 5

 6

 20 40 60 80 100

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

Number of Clients

DBSM
PDBSM

PDBSM+RAC

(b) Storage

Figure 1. Resource usage.

 0

 50

 100

 150

 200

 250

 300

 350

 20 40 60 80 100

La
te

nc
y

(m
s)

Number of Clients

DBSM
PDBSM

PDBSM+RAC

(a) Latency

 0

 2

 4

 6

 8

 10

 12

 14

 16

 20 40 60 80 100

T
P

S

Number of Clients

DBSM
PDBSM

PDBSM+RAC

(b) Throughput

 0

 0.5

 1

 1.5

 2

 2.5

 20 40 60 80 100

A
bo

rt
 R

at
e

(%
)

Number of Clients

DBSM
PDBSM

PDBSM+RAC

(c) Abort rate

Figure 2. Total.

in both approaches presented. In [?] the termination proto-
col fully propagates read and write sets and yet uses a final
agreement protocol.

The work of [?] uses epidemic protocols for implement-
ing a dynamic, adaptive replication schema. Transaction ex-
ecution is entirely local by temporarily caching relations not
replicated at the initiator’s replica. Similarly to the PDBSM,
transactions are executed optimistically without any coordi-
nation between database replicas. Unlike the PDBSM that
uses atomic multicast to totally order the certification of
transactions, in [?], the transaction read and write sets are
epidemically propagated and the transaction “certifies” at
each replica. By contrast to the PDBSM, a conflict between
two transactions dictates the abortion of both.

Except for [?], all the analysis of previous work uses
simple workloads which do not realistically reproduce the
behavior of concurrency control on performance or of certi-
fication on the number of aborted transactions. The accurate
simulation of bandwidth usage in the network is also depen-
dent on the realism of the model.

Other important aspect of our work, is the simulation
model. Usually, the researches mentioned here implement
full simulation, except [?] that uses a real DBSM imple-
mentation. However, a real implementation makes difficult
the setup and management of different experiments (e.g.,
exploit WAN environments). The combination of simulated
and real components [?] give us the possibility to use dif-
ferent environment scenarios but focus on the components
under study.

6 Conclusion

We analyze and evaluate two alternative protocols to ex-
tend the Database State Machine (DBSM) [?] for partial
replication. Our main goal is to reduce resource usage as-
sociated with full replication by exploiting application data
distribution and access locality.

In detail, the first alternative proposed propagates the
read set and write set of each transaction executed to all
replicas, while ensuring that the propagation of the updates
is restricted to interested replicas. Our experimental results
and analysis show that partial replication reduces the used
bandwidth, storage activities and the processor load intro-
duced with replication does not represent a concern. The
second protocol ensures that both read and write sets as well
as updates are all restricted to interested replicas. Our ex-
perimental results and analysis show that this approach is
still better than full replication. However, the overhead of
its required final coordination protocol increases the band-
width consumption.

These results were obtained with analysis and a realis-
tic traffic pattern, according to the industry standard TPC-
C benchmark, in which some frequently used tables were
fully replicated to preserve application semantics. The over-
all evaluation of PDBSM replication using a detailed model
of an wide area network and this realistic traffic pattern, is
however sufficient to show that partial replication using this
approach is useful for large and geographically distributed
databases.

7

References

[1] Y. Amir, D. Dolev, P. Melliar-Smith and L. Moser,
“Robust and Efficient Replication using Group Com-
munication”, Technical Report CS94-20, Institute
of Computer Science, The Hebrew University of
Jerusalem, Jerusalem, 1994.

[2] F. Pedone, R. Guerraoui and A. Schiper, “The
Database State Machine Approach”, J. Distributed
and Parallel Databases and Technology, 2003.

[3] B. Kemme and G. Alonso, “A Suite of Database
Replication Protocols based on Group Communica-
tion Primitives”, in IEEE Intl. Conf. Distributed Com-
puting Systems, 1998.

[4] B. Kemme and G. Alonso, “Don’t Be Lazy, Be
Consistent: Postgres-R, A New Way to Implement
Database Replication”, in Proceedings of 26th Intl.
Conf. Very Large Data Bases (VLDB 2000). Morgan
Kaufmann, 2000.

[5] A. Sousa, F. Pedone, R. Oliveira and F. Moura, “Par-
tial Replication in the Database State Machine”, in
IEEE Intl. Symp. Network Computing and Applica-
tions. IEEE Computer Science, 2001.

[6] J. Gray, P. Helland, P. O’Neil and D. Shasha, “The
dangers of replication and a solution”, in Proceed-
ings of theACM SIGMOD International Conference
on Management of Data, volume 25, 2 of ACM SIG-
MOD Record. ACM Press, June 1996.

[7] G. Chockler, I. Keidar and R. Vitenberg, “Group com-
munication specifications: a comprehensive study”,
ACM Computing Surveys, vol. 33, n. 4, December
2001.

[8] P. Bernstein, V. Hadzilacos and N. Goodman, Con-
currency Control and Recovery in Database Systems,
Addison-Wesley, 1987.

[9] J. Cowie, H. Liu, J. Liu, D. Nicol and A. Ogiel-
ski, “Towards Realistic Million-Node Internet Simula-
tion”, in Intl. Conf. Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’99), 1999.

[10] Transaction Processing Performance Council (TPC),
“TPC Benchmark C Standard Specification Revision
5.0”, 2001.

[11] T. Chandra and S. Toueg, “Unreliable failure detectors
for reliable distributed systems”, Journal of the ACM,
vol. 43, n. 2, 1996.

[12] M. Özsu and P. Valduriez, Principles of Distributed
Database Systems, Prentice Hall International, 1999.

[13] T. Connolly, C. Begg and A. Strachan, Database Sys-
tems: A Pratical Approach to Design, Implementation
and Management, Addison-Wesley, 1998.

[14] R. Guerraoui, “Revisiting the Relationship between
Non-Blocking Atomic Commitment and Consensus”,
in Proceedings of the 9th Intl. Workshop on Dis-
tributed Algorithms (WDAG-9), LNCS 972. Springer-
Verlag, 1995.

[15] A. Schiper, “Early Consensus in an Asynchronous
System with a Weak Failure Detector”, Distributed
Computing, vol. 10, n. 3, 1997.

[16] A. Sousa, J. Pereira, L. Soares, A. Correia Jr.,
L. Rocha, R. Oliveira and F. Moura, “Testing the
Dependability and Performance of Group Commu-
nication Based Database Replication Protocols”, in
IEEE Intl. Conf. on Dependable Systems and Net-
works - Performance and Dependability Symposium
(DSN-PDS’2005), 2005.

[17] J. Cowie, Scalable Simulation Framework API Refer-
ence Manual, March 1999.

[18] M. Pettersson, “Linux Performance Counters”,
http://user.it.uu.se/ mikpe/linux/perfctr/, 2004.

[19] A. Correia, A. Menezes and R. Oliveira, “Off-line Test
Automation for Database Replication Based on Group
Communication”, Technical report, Universidade do
Minho, 2005.

[20] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme
and G. Alonso, “Database Replication Techniques:
a three parameter classification”, in Proceedings of
19th IEEE Symposium on Reliable Distributed Sys-
tems (SRDS2000), pp. 206–215, Nürnberg, Germany,
October 2000, IEEE Computer Society.

[21] G. Alonso, “Partial Database Replication and Group
Communication Primitives (Extended Abstract)”, in
Proceedings of the 2nd European Research Seminar
on Advances in Distributed Systems (ERSADS’97),
1997.

[22] U. Fritzke and P. Ingels, “Systéme transactionnel pour
donnés partiellement dupliqués, fondé sur la commu-
nication de groupes”, Technical Report 1322, IN-
RISA, Rennes, France, 2000.

[23] J.-A. Holliday, D. Agrawal and A. El Abbadi, “Partial
database replication using epidemic communication”,
in IEEE Intl. Conf. Distributed Computing Systems.
IEEE, 2002.

[24] G. Alvarez and F. Cristian, “Applying Simulation
to the Design and Performance Evaluation of Fault-
tolerant Systems”, in IEEE Intl. Symp. Reliable Dis-
tributed Systems, 1997.

8

