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Abstract

Communication of large data volumes is a core functionality of distributed sys-
tems middleware, namely, for interconnecting components, for distributed compu-
tation and for fault tolerance. This common functionality is however achieved in
different middleware platforms with various combinations of operating system and
application level protocols, both standardized and ad hoc, and including implemen-
tations on managed runtime environments such as Java. In this paper, in contrast
with most previous work that focus on performance, we point out that architec-
tural and implementation decisions have an impact in throughput stability when
the system is heavily loaded, precisely when such stability is most important. In
detail, we present an experimental evaluation of several communication protocol
components under stress conditions and conclude on the relative merits of several
architectural options.

1 Introduction
Communication protocols used as components in distributed systems middleware range
from the ubiquitous UDP/IP and TCP/IP Internet standards to custom protocols de-
signed to address different reliability, ordering, performance, resource usage, and re-
silience requirements. In particular, multiparty or group communication protocols have
been traditionally implemented at the application level and been highly relevant to mid-
dleware, for instance, to keep track of operational servers in a cluster and support load
balancing of processing tasks across server clusters.

There has in fact been an increasing interest in group communication protocols
such as JGroups [3], Spread [16] or Appia [10] in middleware supporting current multi-
tier applications, towards both higher throughput and stricter consistency requirements.
An example of this trend is the distributed software transactional memory proposed for
FénixEDU [5]. Instead of relying solely on the underlying shared database manage-
ment system to enforce consistency across different servers, updates are propagated
and implicitly ordered using group communication. Another example is consistent
database replication [8]. This allows concurrent conflicting updates to be processed by
different replicas without fine synchronization thus enabling high performance. How-
ever, it ensures that all transactions are serialized and thus no conflicting updates are
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committed, avoiding the need for reconciliation or explicit sharing easing application
development.

In fact, the motivation for this work was sparked by experimental observations
when building and testing the ESCADA Replication Server,1 a modular database repli-
cation protocol. Briefly, the testing setup used a cluster of servers, each running a
PostgreSQL replica and ESCADA, with the workload of the TPC-C benchmark [17].
Under this scenario, one would observe that update dissemination would eventually
slow down and the number of updates stored in memory grow. This was surprising,
since the bandwidth being generated was easily achieved by a standalone benchmark
of the group communication protocol in the same hardware setup.

This paper aims at explaining why the group communication within the larger ap-
plication scenario would perform worse than in the standalone benchmark by testing
the following two hypotheses:

• By running within a Java application with a large memory heap (i.e. the ES-
CADA Replication Server), the group communication protocol has to compete
for memory with other threads, as the garbage collector represents an increasing
share of the computation taking place.

• By running along a large number of interactive processes (i.e. instances of the
PostgreSQL server) which together consume a substantial share of CPU band-
width, the group communication has to compete for time slices.

Either way, the communication protocol would be unable to schedule events timely, for
instance, to deal with window-based retransmission [6] implemented at the user level.
This would prevent the protocol from fully exploiting available network bandwidth.

If true, this has an impact on architectural decisions when designing or select-
ing group communication protocols. Namely, a protocol made available as a library
in Java should be particularly susceptible to the first. Any protocol that implements
window-based mechanisms at the user level, regardless of using Java, is susceptible
to the second. If true, this poses a challenge to using group communication in large
servers running Java virtual machines with large heaps (e.g. application servers) or
pools of interactive daemons (e.g. web or database servers).

Moreover, an in-depth knowledge of the dynamics of communication protocols in
various workload conditions is also key to enabling self-managing distributed systems.
In detail, being able to operate large and complex multi-tier applications depends on
being able to ensure that individual system components are kept within their capacities
to prevent congestion and trashing phenomena. If models underlying the creation of
rule sets are unaware that communication capacity is degraded by server workloads,
the resulting policies will be unable to keep the system within safe boundaries.

The rest of the paper is structured as follows. Section 2 we describe the commu-
nication protocols that we are evaluating and Section 3 we introduce our experimental
setting. In Section 4 we present results that test each of the hypotheses. Finally, Sec-
tion 5 discusses related work and Section 6 concludes the paper.

2 Protocols
To assess the stability of communication protocols for distributed middleware we select
three kinds of protocols: point to point with network stack at kernel mode, such as

1http://escada.sf.net
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Transmission Control Protocol (TCP) [6] or User Datagram Protocol (UDP) [14]; point
to point with network stack at user mode, like LimeWire RUDP [9] or ENet [15]; and
group communication protocols, such as Appia [10] or JGroups [3].

2.1 Point-to-Point in Kernel Mode
Simple point-to-point protocols implemented within the operating system kernel pro-
vide a baseline for comparison. First, the dynamics of TCP/IP in a number of en-
vironment conditions is well known and its implementation in mainstream operating
systems is thoroughly tested and optimized. Second, because application level proto-
cols are built on them, frequently on UDP/IP, and incur at least in the same overhead.
Thus whenever possible, we test multiple APIs in C and Java, to discover also the
impact of the Java Virtual Machine (JVM).

In detail, TCP protocol was assessed with three interfaces: the native BSD sockets
interface in C, Java using java.net package and Java using java.nio package.
Whenever possible, the same buffers are used for multiple I/O operations to reduce
memory management overhead. In java.nio, direct byte buffers are used as the
documentation describes them as improving performance.

The UDP protocol was evaluated in two implementations, C and Java using the
java.net interface. Note however that UDP is not reliable and thus the amount of
data sent differs from the amount of data received. This makes the tests useful only to
determine baseline overhead.

Finally, the Stream Control Transmission Protocol (SCTP) [11] is aimed at com-
bining the best features of TCP and UDP, ensuring the delivery of messages with or
without order, has congestion control, allows the use of multiple streams and multi-
homing. These features can be switched on and off in contrast to the existing on TCP
and UDP, and in this paper, a configuration similar to TCP has been selected.

2.2 Point-to-Point in User Mode
These protocols should provide an interesting indication of the cost of implementing
reliability in user mode and in Java, when compared with point-to-point protocols in
kernel. They should also provide an indication of the cost of group communication,
when compared to such protocols.

The LimeWire application, implemented in Java, client of the Gnutella network,
was the selected implementation for the evaluation of the Reliable User Datagram Pro-
tocol (RUDP), a lightweight version of TCP, whose features are: guaranteed delivery
of messages, congestion control and retransmission of lost packets.

The ENet [15] protocol, reliable and in-order communication on top of UDP, was
evaluated through their implementations in C and Java [18]. The evaluated versions
were 1.1 and beta1, respectively.

2.3 Group Communication Protocols
Appia [10] is an open source layered communication toolkit implemented in Java pro-
viding extended configuration and programming possibilities. The Appia toolkit is
composed by a core that is used to compose protocols and a set of protocols that provide
group communication, ordering guaranties, atomic broadcast, among other properties.
Appia is a protocol kernel that offers a clean and elegant way for the application to
express inter-channel constraints. In assessing this toolkit only one process writes the
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Resource Properties
Processor 2 × 2.4 GHz AMD Opteron (64 bits)
RAM 4 GBytes
Operating System Linux 2.6.12-16 (Ubuntu Kernel)
Network Gigabit Ethernet

Table 1: Configuration used for benchmarking.

data and another reads it, creating a point-to-point channel in the group membership.
The evaluated version was 4.1.0.

JGroups [3] is a group communication toolkit implemented in Java, which offers
reliability and group membership on top of TCP or UDP. Its most powerful feature is
its flexible protocol stack, which allows developers to adapt it to exactly match their
application requirements and network characteristics. Like Appia, was selected for
this evaluation to measure the impact of increased network stack, particularly being it
in user space. Once again, in assessing this toolkit only one process writes the data
and another reads it, creating a point-to-point channel in the group membership. The
evaluated version was 2.6.3 GA.

Spread [16], another group communication toolkit, consists of a library that user
applications are linked with, in this evaluation our application was implemented in
Java, and a binary daemon which runs on each computer that is part of the processor
group. In this combined implementation, which delegates the communication work to
other process, we are particularly interested in observing the impact of the Garbage
Collector in throughput stability. The evaluated version was 4.0.0.

3 Experimental Setting

3.1 Hardware and Software
The experimental evaluation described in this paper was performed using two HP Pro-
liant dual Opteron processor machines with the configuration outlined in Table 1. The
operating system used is Linux, kernel version 2.6.22-16, from Ubuntu. The C pro-
grams are compiled with GCC 4.1.3 without any special flags. The Java based evalua-
tions are compiled and run with Sun’s Java 1.6.0_03. The availability of multiple CPU
cores allows us to assess also the ability of protocols to take advantage of this features,
which is increasingly important in current hardware configurations.

3.2 Measurements
A run consists in having one process sending messages as fast as allowed by the com-
munication protocol (i.e. the Writer process), while in a different machine another pro-
cess reads them also as fast as possible (i.e. the Reader process). No artificial delays
are inserted in any of them. Although experiments have been reproduced with different
sizes, this paper includes only results obtained by writing and reading data in 2000
bytes chunks. Test machines are otherwise idle, to avoid disturbing measurements.

Measurements are done concurrently by running Dstat [19] every second. Dstat
is a standard resource statistics tool, which collects memory, disk I/O, network, and
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Figure 1: Resource usage with the Garbage Collector workload.

CPU usage information available from the operating system kernel. All measurements
therefore include all load on each of the machines. These are saved to a log file and
later processed off-line to extract the results presented in the paper.

Each run lasts 10 minutes. Communication starts after 4 minutes. Measurements
during the first 4.5 minutes and the last 30 seconds of each run are discarded. This
allows background workload generators to warm up and wind-down without impacting
results. When fully automated, test runs described in this paper take approximately 10
hours to run and produce 15GBytes of log files.

3.3 Background Workload Generators
The first competing background workload generated aims at reproducing the conditions
in a loaded server, in which a large number of processes or threads alternate between
idle and busy periods and compete for CPU. Due to the common operating system
scheduler policy of favoring interactive processes, this workload cannot be duplicated
simply by having a single background process in an infinite loop. Instead, we use the
operating system clock to determine at each time what share of the CPU has been used
and have a pool of processes alternate between idle and busy periods to meet the desired
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CPU occupancy. This strategy affects all processes, because the load is imposed on the
scheduler, which is also affecting processes in kernel mode.

The second competing background workload generator aims at reproducing the
conditions in a loaded Java based single virtual machine server, in which a large heap
is being managed. Due to common garbage collector optimizations, it is not enough to
simply allocate memory in tight loop, since every allocation is short lived and favors
generational garbage collectors. Instead, we build random linked structures such that
probabilistically some elements become unreferenced and others are added at the same
rate.

In this paper we tune the parameters of this workload generator such that it uses
approximately 384MBytes out of a maximum of 512MBytes allocated to the virtual
machine, as can be observed in Fig. 1(a). The resulting usage of CPU is shown in
Fig. 1(b), which shows the garbage collector workload alone up to minute four and then
the cumulative effect of a test run with a TCP/IP socket. The target CPU occupancy of
the CPU workload generator was then set at 60%, to allow direct comparison with the
garbage collector workload generator. Note that this corresponds to slightly more that
the load that one to the two cores can handle.

4 Results

4.1 Unstable Protocols
Unfortunately we were unable to make all target group communication protocols run
the proposed test successfully. Namely, Spread daemons would disconnect either the
sender or the receiver and we were unable to finish any test run. This behavior is well
known and expected, having been thoroughly discussed in the supporting mailing list,
since Spread does not do end-to-end flow control and expected the application to do it.
We were also unable to reliably complete test runs with the Appia protocol, although
it has end-to-end flow control implemented by “memory managers”. It would either
block or crash with out-of-memory errors.

The same problem happened with some of the point-to-point protocols being used
for comparison. Namely, both implementations of eNet would consume an ever in-
creasing amount of memory at the sender, leading to trashing or an out-of-memory
crash. The LimeWire RUDP protocol, although stable, would not be able to use a
significant portion of the available bandwidth and thus does not provide an interesting
comparison. We do however understand that this is most likely a design decision and
not a bug, since the typical usage of Limewire RUDP will have multiple concurrent
connections over a single residential network link (e.g. ADSL).

4.2 Scenario 1: No Competing Workload
Running all protocols without any competing background workload provides a baseline
for later comparison as well as a first measurement of the resources required to saturate
the 1GBits network. The results are shown in Fig. 2 and Fig. 3.

As shown in Fig. 2, bare TCP/IP and UDP/IP are always able to saturate the net-
work, regardless of the API being used in C or Java. However, as seen in Fig. 3, there
is a large CPU overhead when using Java even if we took care not to allocate memory
for each operation, i.e. we always write from and read to the same buffers. Using the
novel NIO interface with direct buffers does not make a noticeable impact.
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Figure 2: Bandwidth usage without background workloads.
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Figure 3: CPU usage without background workload (100% represents the two CPUs
of the machine).
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Figure 4: Distribution of bandwidth in time periods.

Regarding SCTP, also implemented in the operating system kernel, it is interesting
to note that it does not fully saturate the network. The reason for this seems to be that
the sender is fully using one of the available CPU cores. In contrast, CPU usage seems
to be asymmetric, as the receiver is much less intensive.

Both configurations of JGroups tested are unable as well to saturate the network.
Again, the reason seems to be that the sender fully uses one of the two available CPU
cores and is unable to exploit the second. Interestingly, the TCP/IP configuration is
able to achieve slightly higher throughput and use the second CPU core to some extent.
This is probably true as TCP/IP processing is done within the kernel and thus scheduled
to multiple cores.

Finally, besides average throughput, it is interesting to note how each option is able
to sustain such throughput stably, without variation. Fig. 4 plots the empirical cumu-
lative distribution function of bandwidth observed in each period of time. A straight
vertical line or steep slope denote low variance while a moderate slope or staircase de-
note high variance. It can be observed that TCP in Java is more unstable than in C, and
that the UDP configuration of JGroups more unstable than the TCP one.

Lessons Learned: These results point out that one should make as much use of ker-
nel based TCP/IP as possible and avoid Java in the implementation of group com-
munication. Otherwise, one should make the protocol multi-threaded and account for
additional CPU usage.
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Figure 5: Bandwidth usage with competing CPU workload.

4.3 Scenario 2: Competing CPU Workload
As described in Section 3, this scenario adds competing background CPU workload,
thus introducing scheduling latency in user level processes. The impact on average
bandwidth is shown in Fig. 5, showing that all protocols have their throughput reduced.

Fig. 6 shows the same results as a fraction of the original maximum achieved with
each protocol, making it easier to evaluate which protocols suffer the most. The least
affected is UDP, although this is misleading since UDP is not reliable and is discarding
some traffic. Most interestingly, SCTP is one of the protocols that is most affected,
even if it is implemented in the kernel. Moreover, the Java NIO interface performs
worse that the original Java sockets interface.

Regarding group communication protocols, the UDP configuration is much more
affected than its TCP counterpart. This confirms our hypothesis that it is hard to have
a retransmission algorithm in user mode when there is a competing workload and con-
sequence scheduling latency.

Finally, Fig. 7 shows that throughput stability suffers with any of the protocols,
which exhibit similar variability, confirming that there is no significant disadvantage of
Java in this scenario.

It would also be interesting to perform the experiments using a real time scheduling
class for protocol threads. This is however not straightforward for two reasons. The
protocols that need it the most, such as JGroups, are implemented as libraries and this
might require elevating the privileges of the Java virtual machine as a whole, which is
undesirable. Second, since the protocol is itself responsible for a substantial share of
CPU usage, it could seriously degrade the performance of the entire service.

Lessons Learned: These results reinforce that one should make as much use of ker-
nel based TCP/IP as possible in the implementation of group communication. Oth-
erwise, one should make the protocol multi-threaded and account for additional CPU
usage.
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Figure 6: Bandwidth degradation with competing CPU workload.
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Figure 7: Distribution of bandwidth in time periods with CPU workload.

10



U
D

P
 (

Ja
va

)

T
C

P
 (J

av
a)

T
C

P
 (

Ja
va

 N
IO

)

JG
ro

up
s 

(U
D

P
)

JG
ro

up
s 

(T
C

P
)

0

100

200

300

400

500

600

700

800

900

1000

B
an

dw
id

th
 (

M
b/

s)

Figure 8: Bandwidth usage with competing garbage collector workload.

4.4 Scenario 3: Competing Garbage Collector Workload
As described in Section 3, this scenario adds competing background garbage collector
workload, thus being applicable only to Java protocols. As shown in Fig. 8 the degra-
dation of all protocols except the UDP configuration of JGroups is similar to that with
the CPU workload. Recall that both workloads were tuned to consume approximately
the same amount of CPU, although performing different tasks.

Fig. 9 shows the same results as a fraction of the original maximum achievable with
each protocol. This shows that this workload is however highly problematic for the
UDP configuration of JGroups, as it is reduced to as little as 6% of its initial capacity.
This is more than enough to explain our trouble with the ESCADA Replication Server
and should be worrying to anyone using group communication. Recall that this happens
with a workload that consumes approximately only 384MB out of 2GB RAM and only
one of the two CPU cores available, as shown in Fig. 1(a) and Fig. 1(b), which should
be the nominal load expected in many servers.

Finally, Fig. 10 when compared to Fig. 7 shows that although the impact on kernel
based TCP/IP of the competing garbage collector workload seems similar to the CPU
workload in terms of average bandwidth, it introduces much more variability which
may cause additional trouble for timing sensitive applications.

Lessons Learned: These results show that implementing fine grained retransmission
protocols in Java and deploying them as a library in large applications leads to disas-
trous results in terms of throughput stability.

5 Discussion
The experimental evaluation of communication protocols has been addressed by mul-
tiple previous projects focusing both the performance and dependability, including a
spectrum of real and simulated stressful environments.

Some work focused on performance evaluation [2], measuring latency and through-
put of protocols in different situations, targeting the overhead of architectural decisions
and of the Java platform. In this paper we show that such results may be somewhat
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Figure 9: Bandwidth degradation with competing garbage collector workload.
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Figure 10: Distribution of bandwidth in time periods with garbage collector workload.
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optimistic, since Java-based protocols provided as a library are more vulnerable to
competing workloads and thus synthetic benchmarks will not show their actual limits
in a real-world environment.

Work focused on JGroups [1] has shown that the performance the TCP-based con-
figuration is superior to the UDP-based configuration. This is attributed to poor perfor-
mance of the network switch with multicast. In this paper we take this further and show
that this is the case even in a point-to-point connection when no multicast is required.
Namely, we show that this might be explained also by CPU used by the protocol itself
and also by competing workloads on garbage collector and CPU.

An alternative approach has focused on the effect of a slow receiver in the through-
put of multicast protocols [4], showing that performance degradation of the group as
a whole is unavoidable, even when using state of the art protocol mechanisms. This
works was motivated by having observed the degradation in a real setting [13]. This
result is highly relevant together with our contribution, showing that our results, mea-
sured with just two elements, will have a serious impact in larger groups.

Finally, previous work has targeting group communication protocols with a variety
of fault injection techniques, such as memory leaks at the client application level, pro-
cess hangs, abrupt crashes, and packet loss at the network level [12]. Interestingly, it
concludes also that a library-based approach is more susceptible to perturbation. How-
ever, we strengthen the result showing that perturbation occurs in normal operational
conditions without bugs (e.g. memory leaks) and even in very small groups.

6 Conclusions and Future Work
In this paper we set out to explain the poor performance of group communication pro-
tocols observed when there is a competing workload in machines participating in the
group. Based on the hypotheses that this effect might be caused by garbage collec-
tion and scheduling latency, the first challenge overcome was to reproduce the right
workload without having to setup large complex servers.

The benchmark results that were then achieved, comparing multiple protocols with
varying competing background workloads lead us to conclude that a protocol with (i)
a library-based design, (ii) implemented in Java, and (iii) using an user-level window
mechanism on top of UDP, result in a fragile combination that cannot sustain stable
high throughput in the presence of a moderate competing background load. Namely,
we show a configuration in which throughput is reduced to 6% of that achievable when
the system is idle. As a secondary conclusion, we have shown that there is a large
performance and resource usage gap between group communication and TCP sockets,
that exists even when doing a similar point-to-point communication task.

These conclusions pave the ground for future work in several directions. First, it
is interesting to reproduce the results with a wider variety of experimental settings.
Namely, using different operating systems and Java virtual machines. For instance,
the novel Garbage-First Java garbage collector [7] might have an impact in the results.
Second, it is interesting to determine exactly how competing workloads impact the
throughput of protocols. Finally, since the gap between application-level protocols
and bare TCP is so large, there is definitely room for improvement in the design and
implementation of group communication protocols that should be explored.
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