
V C2 - Providing Awareness in Off-The-Shelf
Version Control Systems

Daniel Machado1, Nuno Preguiça2, Carlos Baquero1, and J. Legatheaux
Martins2

1 DI/CCTC, Universidade do Minho
2 CITI/DI, FCT, Universidade Nova de Lisboa

Abstract. Version control systems have been used to help groups of
people working at the same or distributed sites to cooperatively create
documents. In particular, these systems are very popular in distributed
collaborative software development. However, even using these systems,
users often perform concurrent changes that require manual conflict res-
olution, as it was confirmed by a study on conflicts in cooperative soft-
ware development. Important causes for this situation are the lack of
mutual awareness and coordination, among developers, and reluctance
to commit unstable modifications. The paper addresses this problem by
providing a tool that integrates with off-the-shelf version control systems
and monitors filesystem accesses to relevant files in order to enhance the
awareness among developers. With V C2 users can be aware of uncom-
mitted changes made by remote users; receive request to commit their
own changes; be advised to update their local versions. While the final
decision is always under user control, the team is made aware of the
level of risk when delaying commits and updates in their version control
system of choice.

1 Introduction

The development of team projects often requires the use of tools to aid the
coordination and synchronization of work between members. There is a sub-
group of these tools known as Version Control (or Revision Control) Systems,
many of them are widely established and used, specially in software development
projects. Popular examples of such systems are CVS [5], SVN (Subversion) [20]
and Bazaar [2].

These systems divide in two main subgroups: those using the client-server
model (CVS, SVN, . . .) and those using the distributed model (Bazaar, Git,
SVK, BitKeeper, . . .).

In the client-server model, the files of a project are located on a server repos-
itory. Each user can checkout her local copy from the repository, work locally in
the copy and submit changes back to the server. At any time she can also check
the server for new versions of files submitted by other users.

In the distributed model there’s no server. Each user has her own local repos-
itory with a copy of the project. She may submit changes to her local repository,
and at any time, two or more users may choose to merge their local copies.

There are many features available in this kind of systems such as keeping
track of changes between different versions of a file, checking the status of a local
file against a remote copy, adding and removing files, updating and committing
changes, and some that may be specific to the model they use.

1.1 Motivation

While working in a cooperative project under version control tools, users end up
concurrently updating the same files. In a client-server system, one of the users
will commit first to the central server and the second one will have to incorporate
these changes into her files before committing successfully. Version control sys-
tems have mechanisms to automatically merge these concurrent changes when
different areas of the files are modified. When the same areas of the files are
modified, the user has to manually solve the detected conflicts before being able
to commit her changes to the central server.

The sole usage of version control tools is not enough to avoid this problem.
In typical usage scenarios, these situations occur with some frequency as it was
verified in a study with real data in projects hosted at SourceForge.net and sup-
ported by CVS [5] (see Section 4 for details). However, solving conflicts may
be problematic, specially if the users have made a big number of changes that
have not been committed for a long time. These problems may lead users to be
reluctant to engage in cooperative projects and even to avoid parallel develop-
ment [10].

To minimize these problems, users could follow some “best-practices” guide-
lines, such as regularly keeping their local copies up-to-date and committing as
soon as possible, as this approach decreases the probability of conflicts [6]. The
problem is that these guidelines are often contrary to good working practices for
cooperative projects – e.g. users may only want to commit changes that leave the
project in an consistent state, therefore delaying their commits for long periods
of time such as days or weeks [17].

The goal of this work is to provide awareness of other users’ activities between
synchronization points, helping users to coordinate their work and avoid the need
for time consuming conflict resolution tasks [7]. Unlike previous works, where
awareness is provided in an application that is different from the application
used to edit the shared documents [3, 15] or that require specific editors [18, 13],
our solution allows users to continue using their preferred unmodified editors.
Awareness information is provided as users access files by using any applica-
tion. Moreover, our solution also does not require any additional infrastructure,
building on the existing version control system to propagate the necessary infor-
mation.

The remainder of this paper is organized as follows: The next section reviews
the related work. Section 3 characterizes the semantics of changes in a distributed
environment. This is followed by Section 4 that quantifies the amount of con-
flicts that can be observed in collaborative software development environments.
Section 5 presents the proposed architecture and Section 6 illustrates a typi-

cal use case. Implementation details and evaluation are reviewed in Section 7.
Discussion and future work in Section 8 is followed by Conclusions.

2 Related Work

Awareness information has long been identified as important for the success of
cooperative activities by providing users with an understanding of other users’
activities [7]. In groupware systems, a large number of awareness tools have
been proposed for synchronous collaboration, such as multi-user scrollbars [1],
telepointers and radar views [11], remote screen view [21], etc. These tools allow
a user to have some information about the current activities of other users, but
they are not appropriate for asynchronous collaboration.

In this work, we address the support for providing awareness information
in the context of team projects developed with version control systems. In this
context, awareness information can help users coordinate their work, thus mini-
mizing the occurrence of conflicts. For example, if a user starts working on a file,
he should be aware if someone else has already modified the file concurrently.
Having this information will help users decide when to update files, when to
commit, thus minimizing the potential for conflicts.

Version control systems (e.g. CVS [5], SVN [20] and Bazaar [2]) provide the
basic support for team projects, by maintaining and controlling the evolution of
file versions for the project files. When a user changes a file and commits her
changes, it is usually possible to add a comment describing the change. When
another user gets the most recent copy of a given file, she can also retrieve the
added comments. Although important, this form of awareness is limited as it is
only provided when a user decides to update her local copies and it only includes
information about committed changes.

CVS also includes an additional mechanism that can be used to provide
awareness information: CVS watches. When using CVS watches, users must
announce their intents of modifying a file beforehand (by executing a special
command). Users can register their interest on specific files and be notified by
email when someone announces the intent of modifying it. A user can also check
which users have announced the intent of modifying some file. This approach
has several limitations. First, using email leads to several undesired properties:
users must check for notifications in an application that is different from the one
they use for editing the shared files; users may receive notifications while they are
working on some unrelated task and they may even forget about the notifications;
the delay for email propagation may vary, leading to unpredictable delay for
notifications. Second, requiring users to issue special commands for announcing
modification intents imposes an non-negligible overhead on users and may lead
users to announce intents for all files in the project. These limitations may be
partially overcome with integration in a specific editor, such as provided by
Eclipse’s Team CVS. This tools automatically issues the special CVS commands
when the user starts editing a file and it allows a user to check which users are
modifying some file. Our work also supports these features, but they can be

used independently of the editor. Additionally, our design is also independent of
the version control system and only relies on the common version management
functions. Finally, it allows additional interaction among users (e.g. a user may
request other user to commit her work).

The BSCW system [3] is a web-based system that includes a version con-
trol system to manage shared files. In this system, when some action (check-out,
check-in) is executed an event is recorded. The system can present a list of recent
event to users when they connect to the system. In [8], the authors introduce a
tool for integrating notification and chat with the CVS system. In this system,
users are informed when some user commits changes to a file, with events be-
ing propagated using an event-dissemination system. Unlike our system, these
systems presents no awareness about modifications before they are committed.

In State Treemap [15], the authors propose an awareness widget that al-
lows users to visualize which files are being concurrently modified (leading to a
potential conflict) and which locally modified files have already been commit-
ted (leading to a conflict). This widget has been integrated in a platform for
supporting virtual teams of architects.

The Palant́ır [18] system provides similar information for files stored in ver-
sion control systems, relying on an event notification system for propagating
information among users. The authors have created wrappers for SVN, RCS
and CVS, with events being propagated when edit/update/commit commands
are executed. The authors have also developed a plug-in for Eclipse, allowing
awareness information to be presented in Eclipse. The Jazz [12] system also
provides similar information, as an extension to Eclipse.

In Gasper [13], the authors propose a generic mechanism for propagating
limited information about changes being performed. Awareness information is
provided in the editors in the form of annotations — e.g. if some user is modifying
a method in a code file, other users could see an annotation about this fact in
their user interface.

Several other systems have been designed for providing awareness informa-
tion in the context of collaborative software development (see [19] for a survey).
These systems can be divided in two groups. The first (including State Treemap
and Palant́ır) requires the use of an additional tool for checking the aware-
ness information. Besides the problem of convincing users to use an additional
tool, this approach has the drawback of requiring users to explicitly check for
awareness information when they start editing the shared files (as there is no
connection between the editing activity and the tool that provides the awareness
information). The second group (including Palant́ır, Jazz and Gasper) provides
the awareness information in the context of a specific editor. This approach is
interesting but it forces users to use a specific editor. Additionally, it requires
the plug-ins to be updated when a new version of the editor is released. In our
work, we provide awareness information for any editor, thus allowing users to
continue using their preferred editors. Additionally, unlike previous works that
require specific support from the version control systems or that rely on an ad-
ditional infrastructure, we propagate the required information using files stored

in the version control system. Thus, our approach can be easily deployed with
existing version control system.

3 The Semantics of Version Control

In this section we present an overall view of how version control works. At this
point we will only consider the centralized model (CVS, SVN, . . .) and leave
the distributed model as future work. In this presentation, to avoid too much
complexity we will not consider the adding and removing of files and folders
from the repository and the conflicts that may arise from these operations.

In version control systems, a user must start by checking out files that are
stored in the repository, thus creating a local private copy. At any moment, the
user may update her local copy against the latest version stored in the repository
(up). The user may also modify her local copy (m). After modifying her files,
the user may commit her changes to the repository (c). When considering other
users activity, two additional actions may occur on a given file. A remote user
may have modified the file (rm) or committed her remote changes (rc).

From the point of view of the local user, the state of a file may combine the
following situations:

– Remotely changed (R), when a remote user has modified her local copy of
the file but she has not committed her changes yet.

– Outdated (O), when a remote user has committed changes to a file that
have not been incorporated in the local copy.

– Modified (M), when the file has been locally modified.

In Figure 1 we present a diagram that shows the possible states of a file,
and the transitions among these states induced by users’ actions (both local and
remote actions). There are two situations that may lead to a conflict if the user
modifies her local copy:

– The user modifies a file that was remotely modified by some user that has
not yet committed her changes to the repository.

– The user modifies a file that is outdated against the current version on the
repository.

Conversely, conflicts may also arise if a remote user modifies an old version
of a file that has been locally modified, either it has already been committed
or not. In the figure, we mark as thin-dashed all these dangerous transitions
that may lead to a conflict status. For each of these transitions, we mark as
thick-dashed the alternative transition that should be taken to avoid falling
into a conflict situation. All other transitions are considered normal actions of
working in the file.

In order to help the user avoiding the situations that may lead to conflicts,
our tool will provide advance warning about conflict-leading actions. Thus, when
a users starts accessing a file that has been modified elsewhere, a notification

Fig. 1. Transitions between states of a file from a local perspective.

will be presented to the user suggesting an alternative action. For example, if
the user accesses a file that is being concurrently modified by some other user,
the user is notified of the fact and may ask the other user to update the file.

4 Conflicts on Real Usage Scenarios

To assess the importance of providing an awareness tool for version control
systems, we have decided to investigate the degree of conflict occurrence in real
usage scenarios. In the distributed filesystem community, several usage studies
have been presented showing that, although supported by these systems, there is
minimal file sharing and that concurrent updates are very rare (e.g. in [16], the
authors report 0.025% for the update conflict rate and 0.004% for the unsolved
conflicts).

It is clear that in cooperative settings the situation should be different and
a much higher conflict rate is expected. To confirm and measure this, we have
decided to study real traces from collaborative software projects managed by
CVS at SourceForge.net. In this paper we only present a brief summary of our
results (the complete results are presented elsewhere [4]).

In CVS, for each project, the server maintains a log with all accesses to
the files of the project. For studying conflicts, we have downloaded the logs
for several multi-user projects and we have computed the following statistics:

number of updates executed by users3; number of conflicts (either automatically
merged or requiring manual resolution); and the number of conflicts requiring
manual resolution. We have selected projects in the most active list (for which we
have analyzed a period of two months of activity) and other less active projects
(for which we could analyze the full log).

These logs had to be processed before statistics could be obtained. First,
after solving a conflict manually, a user must commit the new version, leading to
two CVS log entries. Second, we have observed that, after a conflict detection,
users sometimes download the current version of the file before committing a
new version. This suggests that users prefer to re-apply their changes to the
new version instead of changing the version produced by CVS. In both cases, we
count the resulting pair of log entries as one unsolved conflict.

Table 1. Statistics of conflicts (concurrent updates) in several collaborative software
development projects hosted at SourceFogre.net.

Conflicts in
Project # users # files # updates top 10% top 50% all files

Gallery 24 2347 4456 17.1% 6.3% 3.1%
Gnuplot 13 795 15813 14.8% 5.2% 2.6%
Xine 32 1460 2359 11.7% 4.6% 2.3%
Firebird 91 7592 50370 9.4% 2.0% 1.0%

In Table 1, we summarize the most relevant information about the logs pro-
cessed, including the number of users and files involved in the development of
the project and the number of updates executed during the observed period. We
also present the rate of conflicts when considering the 10% most modified files,
the 50% most modified files and all files. In Figure 2, we detail these results for
the Gnuplot Project. For ease of presentation, each point in the graph presents
the average of 20 files.

The results show that the rate of conflicts is large. As we could expect,
when considering only the most active files, the rate of conflicts is much larger
as it is more likely to have more than one user modifying the file. For rarely
accessed files, conflicts are rare. For example, when considering only the 10%
most active files, the rate of conflicts ranges from 9% to 17%. From the results
of the Gnuplot project, we can also observe that almost half of these conflicts
have to be solved manually by the users. Thus, it seems clear that the existence
of a tool for providing awareness information about other users’ activity may
improve the effectiveness of the collaborative process by helping users to avoid
these conflicts.

3 Using the CVS logs, an update can only be detected when the user decides to commit
her changes. Thus, one update may reflect several changes performed by a single user
from the last moment she has updated her local copy of the file until she decides to
commit her changes.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 40 80 120 160 200 240 280

O

pe
ra

tio
ns

Files

Updates to Repository
Conflicts

Unsolvable Conflicts

0%

10%

20%

30%

40%

50%

 0 40 80 120 160 200 240 280

%
 O

pe
ra

tio
ns

Files

Conflicts / # Updates
Unsolvable Conflicts / # Updates

Fig. 2. Gnuplot Project statistics - absolute values on the left graph and the ratio
between solved/unsolved conflicts against the number of updates on the right.

5 System Architecture

5.1 Approach

The proposed Version Control Control tool (V C2) provides awareness for cooper-
ative editing activity by combining filesystem probing and activity dissemination
among the group using metafiles stored in the version control system.

A first step is to detect activity on any file under version control. This is
achieved by inserting probes in the filesystem of participating nodes. Striving
for a general solution, we avoided considering particular file activity patterns of
specific editors, but instead concentrated on the detection of distinctive actions
that result from the user activity. When a user starts editing a file, the editor
application has to read the file from disk. We detect this action by detecting the
open system call. When a user decides to save her changes to the file (or when
the application automatically saves her changes), the editor application has to
write the file contents. We detect this action by detecting the close system call
after the new file version being written to the disk.

Filesystem probing can be achieved by adding code to kernel filesystem rou-
tines, with kernel tapping mechanisms such as Fuse [22] and Fist [24], or by
subscribing to filesystem events on kernels that support them, e.g. INotify[23].
Since V C2 notifications do not require blocking or delaying file operations, ker-
nel access is not mandatory and event subscription can suffice. This also means
that users are warned of actions that can lead to conflicts but are free to ignore
those warnings and have full accesses to the files.

A second aspect concerns the diffusion of information within the developer’s
group. While other systems choose to use external mechanisms of dissemina-
tion or tailor their own dissemination service, in V C2 we choose not to add
any additional mechanism. This is possible because an existing communication
mechanism is already available in the version control mechanism.

V C2 uses the existing version control system to disseminate additional con-
trol information across the hosts. It suffices to enclose this information as spe-

cial metafiles in the project tree and exchange them with the existing commit
and update functionality. This also allows reuse of authenticated channels, say
ssh, that might already be prepared for communication with the project server.
Finally, this approach provides awareness information even if users are not con-
nected at the same time, because the control information is maintained on the
server. For example, if a user has started to change her local copy of the file but
then she has stopped working and disconnected her computer, the information
about this activity is still stored in the server. If another user (that could have
been disconnected) starts accessing the file, he will be notified of the potential
problem.

5.2 Architecture

The typical setup, when using the tool with client-server version control, com-
prises a CVS/SVN server in a hosting server machine and two or more users
in a given number of other machines – we will refer to these as clients. Client
machines must have connectivity and access to the server, either by ssh or spe-
cific CVS/SVN ports. There is no need for connectivity among client machines.
There is no impact even if they are all hidden by firewalls.

Any client machine will just have to support standard CVS/SVN client tools
and, in addition, have installed local support for either Fuse or Inotify (See
Section 7 for supported systems). The V C2 approach tolerates the presence of
standard CVS/SVN clients that cannot introspect the filesystem and run the
tool. As expected, activity on those clients will not be made aware to others and
vice-versa.

Each client machine runs a V C2 daemon that acts on filesystems events,
creating separate threads for any event that requires GUI interaction or commu-
nication to the server. Periodically, the daemon pulls information from the server
in order to detect reported remote changes on monitored files. In the following
section we give details on the behavior of V C2.

5.3 V C2

The tool currently supports the usage of CVS and SVN (since these are the most
popular open source tools using the client-server model), although support for
other systems could be easily added.

The daemon is implemented as a Java user level process. It makes use of
a filesystem notification layer that can be provided by either FUSE probes or
Inotify events (details on these tools will be given in Section 7). Once aware
of all system calls to the filesystem, our tool can check if the accessed files are
under control of any version control system, and try to detect behaviors that
may potentially lead to conflict scenarios. If such a case is detected it will alert
the user suggesting a recommended action to take.

To start using our tool it suffices to have a working setup of the supported
version control systems and start the Java V C2 daemon. At this point the user
can checkout her projects to directories inside a controlled local filesystem. After

that, every time she opens or closes a file, the system will check if that file is
under control of the version control system. All other files are ignored and are
transparent to V C2.

If a file is under control, our tool will check its status and alert the user
when necessary. The status of the file is kept in a metafile which is saved in
the repository. The first time the tool checks the status of a file, it create the
associated metafile if none exists. Each time the system consults or changes
a metafile, it will update it from the repository and if there are changes it
will commit immediately. Inside the daemon, we implement concurrency control
to guarantee the atomicity and consistency of these operations. All metafile
operations on the repository are made with standard CVS/SVN tools.

At the moment, the only information on the metafile is the number of users
with uncommitted changes, and the number of users requesting the commit of
those changes. In Section 8 , we will elaborate on additional information that
could be used in the metafiles, such as the name of the users changing/requesting
a file and messages associated with these changes/requests.

When opening a file, our tool will consult the metafile to check for uncom-
mitted changes made by other users. If there are any, it will alert the user of the
situation and ask if she wants to request the updating of that file. Also, if the
local copy of the file is outdated compared to the version on the repository, it
will alert the user and ask if she wants to update to that version.

When closing a file, it will check if there were any changes made, by checking
the status against the repository version. If the file was locally changed it will
increment the number of changers on the metafile. The file will also be added to
a list of uncommitted files, that is regularly checked by a timer thread.

The timer thread checks the list of uncommitted files by two reasons. The
first is to check if any user has requested the update of a locally modified (but
uncommitted) file. If one is found, it alerts the user about this request and asks
if she wants to commit her changes. The other reason is to check if the user
already manually committed the files and they are no longer locally changed. In
any of the previous cases, if the file was committed, the number of changers is
decremented, and if it reaches zero (which means that there is no uncommitted
changes) it sets the number of update requesters to zero.

User alerts are implemented by dialog boxes that pop up on the screen, usu-
ally with a yes/no question. Since we are using Java, our tool is cross-platform.
There is a small delay between the open/close of the file and the alert. This is
the time spent to update the associated metafile, and will depend on the latency
of the connection to the repository. It may be almost imperceptible if the repos-
itory is in a local network or the connectivity is fast, or it may take up to a few
seconds if the user has bad connectivity to the repository server.

As it was described, there is no need for server side intervention on CVS/SVN
platforms, allowing the use of any off-the-shelf public server. Additionally, as it
relies only on common version control management, it should be immediate to
include support for other version control system.

6 Usage Example

In this section we show a small example of how the tool is used and how it helps
the coordination of a team project.

Suppose there are three developers working on an AddressBook application
in C++. Alice is developing the user interface, Bob is working mostly on the core
of the application, and Charlie is developing a storage module to save application
data. The structure of the project is the following:

AddressBook/inc/core.h
AddressBook/inc/storage.h
AddressBook/inc/UI.h
AddressBook/src/core.cpp
AddressBook/src/storage.cpp
AddressBook/src/UI.cpp
AddressBook/help.html

The developers start by checking out the project from the CVS repository
into a local directory, and then begin working on it. Suppose the following action
are executed:

1. Bob changes core.h and core.cpp
2. Alice which has been working on UI.cpp now needs to know how to retrieve

phone numbers and consults core.h. As she opens the file, a popup alerts her
that there is one user with uncommitted changes on that file, asking if she
wants to send an update request (Figure 3). She agrees.

3. A popup appears on Bob’s screen saying that one user is requesting an
update on core.h, and asking if he wants to commit (Figure 4). Bob agrees
and the file is committed.

4. Alice, who decided to work on something else, now returns to her previous
task. As she opens core.h, a popup alerts her that her version of the file
is outdated, asking if she wants to update. She agrees and the file is now
up-to-date.

5. Charlie, who’s been working on the storage has committed a new version of
storage.cpp and is already working on a new one.

6. After running some tests, Bob believes there may be a bug on the storage,
and decides to consult storage.cpp. He is alerted to the fact that there is
a user with uncommitted changes on that file, and agrees to request an
update. He is also alerted to the fact that his version of the file is outdated,
but decides not to update immediately and waits until Charlie commits his
recent changes.

7. Charlie is alerted about one user requesting him to commit his changes on
storage.cpp, but as he is currently fixing a bug, he decides not to commit
until he finishes.

8. A few minutes later the bug is fixed and Charlie commits his changes. In the
mean time, both Alice and Bob are making some changes to the help.html
file.

9. Charlie wants to add this bug-fix in the release notes of the help.html file.
He is alerted to the fact that two users have uncommitted changes (Figure
5). Since he just wants to add a line of text, he decides not to request an
update.

10. Later, Bob decides to check again for the bug. He updates the storage files,
runs some new tests and realizes that the bug has been fixed.

Fig. 3. Alice being alerted that the file she wants to access has been modified by some
other user. In this case, Alice is using the Eclipse editor.

This is a little example of how awareness can help the coordination of software
development. Its simplicity may not fully expose the importance that a small
increase in awareness can have in team development, but this becomes clear when
we consider the number of conflicts that occur in real situations, as reported in
Section 4.

7 Implementation

We have created two implementations of the filesystem layer of our tool using
different approaches. The first is based on Fuse [22] and the second one on
INotify [23]. Each has its own advantages and disadvantages, that are discussed
throughout this section.

7.1 FUSE

File System in Userspace (Fuse) is a Unix kernel module that allows non-
privileged users to create virtual filesystems that run in user space [22]. The

Fig. 4. Bob being asked to update his uncommitted version of the file (as a result of
Alice’s request). In this case, Bob is using the VIM editor.

Fig. 5. Charlie being alerted that the file he want to access has been modified by some
other user. In this case, Charlie is using the Emacs editor.

Fuse module intercepts system calls to the filesystem and redirects them to
code that runs at user level. There are many projects using Fuse to create a
virtual filesystem with different purposes. Some popular examples are [22]:

– SSHFS: Provides access to a remote filesystem through SSH
– GmailFS: filesystem which stores data as mail in Gmail
– EncFS: Encrypted virtual filesystem
– Captive NTFS, ntfsmount, and NTFS-3G, allowing access to NTFS filesys-

tems

Fuse is available for Linux, Mac OS X, Solaris and FreeBSD. It is also
possible to implement similar mechanisms in Windows (which are currently used,
for example, by anti-virus and indexing software). There are several language
bindings available such as C++, Java, C#, Haskell, Python, Perl and others.

In this project we used Fuse-J [9], the Fuse binding for Java. This solution
has the advantage of intercepting the filesystem calls, allowing to execute code
before returning results to the applications. This could be used, for example, to
update the local copy of a file before allowing the application to read its contents.
These kind of functionality is not used in our tool, as we have decided to just
provide awareness information.

7.2 Inotify

Inotify [23] is a Linux kernel subsystem that provides filesystem event notifi-
cation (a similar mechanism exists in the Mac OS X system). With Inotify it
is possible to monitor directories and files for events such as open, close, create
or delete. An application may register itself to be notified for events occurring
inside a set of directories, which is much more efficient than actively searching
for changes or interposing code in the execution if the file system calls (as in
Fuse).

In this project we used JNotify [14], a Java library that works as a wrapper
around the Inotify API.

7.3 Benchmarking

In this section we do some performance analysis on our tool. We want to see
how our virtual filesystem compares to the native filesystem. For this, we used
a project with 100 text files with a total of 1.7 MB (average file size: 17 KB).

As described earlier, each time the user opens a file, our tool will check if it
is under version control, and in this the case it will check if there are remotely
uncommitted changes or if the file outdated. This check is asynchronous, which
means the user can keep opening files while another thread performs the check.
We measured the time spent to open and read all the files (using the command:
cat * >/dev/null) in the following scenarios: on the native filesystem; Fuse
vs Inotify; normal files vs files under CVS control vs files under SVN control.
In all cases the repository is on a remote machine. On Table 2, we present the

Table 2. Benchmarking results (in milliseconds per file) for the 1st run, the mean of
10 runs and standard deviation.

Native Inotify Inotify+CVS Inotify+SVN Fuse Fuse+CVS Fuse+SVN

x1 0.206 0.208 0.209 0.399 11.913 24.906 33.179

x 0.185 0.220 0.299 0.383 11.569 13.898 14.174

σ 0.014 0.054 0.285 0.557 0.203 3.688 6.502

results for the first run, followed by the mean value of 10 runs and the standard
deviation.

From the results in Table 2 we can observe that the overhead of using Ino-
tify is almost null. Since notifications do not delay the filesystem call flow, the
overhead is only due to the increased load on the machine and the running of
additional tasks. The system asynchronously verifies if some awareness informa-
tion must be provided. The delay to provide such information depends on the
latency to the repository server, as the client’s daemon must check if there is
any recent control information on the server.

It was not unexpected to confirm that there is a significant time overhead
associated to filesystem interception in Fuse. In particular, on the first access
to each file, when the metafiles do not exist and have to be created. It could
be argued that the loss of performance caused by the virtual filesystem does
not affect the normal development of a project, since the overhead in opening a
single file is not perceived by the user in an interactive session (the incurred delay
is below 15ms). However, there are still situations where it can have a greater
impact. The initial checkout of a large project will be considerably slower on the
virtual filesystem.

In the current V C2 implementation there is no situation in which we opted
to delay or deny user actions on files. There are cases in which one could want to
do so, for instance if we wanted users to have mandatory interactions with the
V C2 GUI in order to proceed with the opening of files. In such cases, filesystem
interception would be the only solution.

Under the present V C2 interaction model the best solution is clearly to re-
sort to filesystem notifications and avoid the overhead incurred by file system
interception.

8 Discussion and Future Work

The simple and generic architecture of our tool makes it easy to extend it with
new features. As we mentioned before, there are still many features worth of
development. In this section we discuss some of these features.

Knowing the number of users that are changing/requesting a file is useful,
but this can be further improved by showing a list with these users’ names.
To this end we may consult the username used to access the repository, or the
username on the local machine. Along with the list of users changing/requesting
a file, we could also associate messages with these actions by having a small text

input field in the popup dialogs. These would be stored on the metafiles and
displayed in the alert messages. This can provide a lightweight communication
channel with a history that may be integrated in the version control system’s
logs (as in [8]).

When a user is alerted to the fact that other users have uncommitted changes
and sends a request for update, it would be useful to be alerted when all the
users have committed. The timer thread could be easily extended to verify this
situation (as it already verifies a similar situation on locally changed files).

As discussed before, it may not be convenient for developers to immediately
commit their source code. This is not the case of documentation and other kind of
files. For these we could define user configured properties such as auto-commit or
auto-update that would automatically commit a changed file, or automatically
update outdated files, and consequently eliminate most of the need for user
interaction.

8.1 User Interface

One of the main goals of our tool is automatic integration with minimum user
interaction required. The users do not need to explicit consult the state of the
project’s files to receive awareness information. Instead, they work normally and
eventually receive alerts for potentially dangerous situations. Still, our alert-
based approach is a bit intrusive, creating a new window for each alert. We are
studying the possibility of providing an alternative interface, where all alerts
could be cumulatively displayed in a single, less intrusive, popup window.

Although some users may enjoy the simplicity of using just our alert based
solution, others may require additional functionality such as checking the ac-
tivities of other users in the context of some project (as provided, for example,
by [15, 18]). In our tool, this information is already maintained in the metafiles.
For supporting these users, we are currently developing an user interface that
allows the user to browse this information (e.g. check which files are being modi-
fied, and by whom, who has requested updates and other info we may extend). In
this tool, we could also allow users to apply an explicit action such as updating,
committing, requesting update, or even set auto-update/commit flags.

9 Conclusions

Conflicts are bound to occur when users engage in collaborative development of
code (or text) in standard revision control frameworks. Since conflicts are often
troublesome to solve, users try to avoid them by frequently issuing commits or by
negotiating in parallel channels, like instant messaging applications and email.
These actions are preventive and time consuming, and they are necessary due
to the lack of mutual awareness among developers.

In this paper we introduce a system that addresses this problem, by greatly
improving the level of awareness without forcing the commitment of unstable
versions. The solution depicted in V C2 is general and independent from the

actual version control system in use. It currently runs on CVS and SVN and
it is straightforward to adapt it to other version control tools. More important,
V C2 does not require any intervention on the server side, thus the solution can
be deployed with public servers, such as SourceForge. Our solution also works
independently of the editor used by users, thus allowing users to continue using
their preferred applications.

References

1. Ronald M. Baecker, Dimitrios Nastos, Ilona R. Posner, and Kelly L. Mawby. The
user-centred iterative design of collaborative writing software. pages 775–782, 1995.

2. Bazaar. Bazaar version control, 2007. http://bazaar-vcs.org/.

3. R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D. Kerr, K. Sikkel, J. Trevor, and
G. Woetzel. Basic support for cooperative work on the world wide web. Interna-
tional Journal of Human Computer Studies: Special issue on Novel Applications of
the WWW, 46(6):827–856, Spring 1997.

4. Marcos Bento. Desenho e implementação de um sistema de ficheiros com suporte
para dispositivos de armazenamento portáteis. Msc thesis, FCT - Universidade
Nova de Lisboa, 1 2007.

5. Per Cederqvist et al. Version management with CVS, 2007.
http://www.cvshome.org/docs/manual.

6. S. Dekeyser and R. Watson. Extending Google Docs to Collaborate on Research
Papers. Technical report, The University of Southern Queensland, Australia, 2006.

7. Paul Dourish and Victoria Bellotti. Awareness and coordination in shared
workspaces. In Proceedings of the 1992 ACM conference on Computer-supported
cooperative work, pages 107–114. ACM Press, 1992.

8. G. Fitzpatrick, P. Marshall, and A. Phillips. CVS integration with notification and
chat: lightweight software team collaboration. Proceedings of the 2006 20th an-
niversary conference on Computer supported cooperative work, pages 49–58, 2006.

9. FUSE-J. The fuse binding for java, 2007. http://sourceforge.net/projects/fuse-j.

10. R.E. Grinter. Using a configuration management tool to coordinate software de-
velopment. Proceedings of conference on Organizational computing systems, pages
168–177, 1995.

11. Carl Gutwin, Mark Roseman, and Saul Greenberg. A usability study of awareness
widgets in a shared workspace groupware system. In CSCW ’96: Proceedings of
the 1996 ACM conference on Computer supported cooperative work, pages 258–267,
New York, NY, USA, 1996. ACM Press.

12. Susanne Hupfer, Li-Te Cheng, Steven Ross, and John Patterson. Introducing col-
laboration into an application development environment. In CSCW ’04: Proceed-
ings of the 2004 ACM conference on Computer supported cooperative work, pages
21–24, New York, NY, USA, 2004. ACM Press.

13. Claudia-Lavinia Ignat, Gérald Oster, Pascal Molli, and Hala Skaf-Molli. Gasper:
A collaborative writing mode for avoiding blind modifications. Research Report
RR-6204, LORIA – INRIA Lorraine, may 2007.

14. JNotify. Jnotify linux api, 2007. http://jnotify.sourceforge.net/.

15. Pascal Molli, Hala Skaf-Molli, and Christophe Bouthier. State treemap: an aware-
ness widget for multi-synchronous groupware. In 7th International Workshop on
Groupware - CRIWG’2001, Darmstadt, Germany, September 2001.

16. T. W. Page, Jr., R. G.. Guy, J. S. Heidemann, D. H. Ratner, P. L. Reiher, A. Goel,
G. H. Kuenning, and G. Popek. Perspectives on optimistically replicated peer-to-
peer filing. Software – Practice and Experience, 11(1), 1997.

17. R. Robbes and M. Lanza. Versioning systems for evolution research. Proceedings
of IWPSE, pages 155–164, 2005.

18. Anita Sarma, Zahra Noroozi, and Andre van der Hoek. Palant́ır: raising awareness
among configuration management workspaces. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages 444–454, Washington,
DC, USA, 2003. IEEE Computer Society.

19. M.A.D. Storey, D. Čubranić, and D.M. German. On the use of visualization to
support awareness of human activities in software development: a survey and a
framework. Proceedings of the 2005 ACM symposium on Software visualization,
pages 193–202, 2005.

20. Subversion. Next-generation open source version control, 2007.
http://subversion.tigris.org/.

21. Kimberly Tee, Saul Greenberg, and Carl Gutwin. Providing artifact awareness
to a distributed group through screen sharing. In CSCW ’06: Proceedings of the
2006 20th anniversary conference on Computer supported cooperative work, pages
99–108, New York, NY, USA, 2006. ACM Press.

22. Wikipedia. Filesystem in userspace — wikipedia, the free encyclopedia, 2007.
[Online; accessed 30-May-2007].

23. Wikipedia. Inotify — wikipedia, the free encyclopedia, 2007. [Online; accessed
6-June-2007].

24. Erez Zadok and Jason Nieh. Fist: a language for stackable file systems. In Pro-
ceedings of the Annual Technical Conference on 2000 USENIX Annual Technical
Conference, Berkeley, CA, USA, 2000. USENIX Association.

