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Abstract

Traditional replica control mechanisms such as quorum consensus, primary repli-
cas and other strong consistency approaches are unable to provide a useful level
of availability on unconstrained mobile environments. We define an environment
thats exploits pair-wise communication and allows autonomous creation and joining
of replicas while ensuring eventual convergence. A set of composable components
(ADTs) are formally specified using the SETS Calculus. These components can be
used to build simple distributed applications that take advantage of peer-to-peer
communication between mobile hosts.
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1 Introduction

In recent years distributed systems have evolved considerably. Two examples are mobile
computing [11], prompted by the increasing presence of portable an handheld computers,
and large-scale distribution on the internet [6, 5]. In both cases programmers have now
to deal explicitly with the absence of communication, that is, disconnection or network
partitions should not be regarded as occasional faults but should be considered early in
the design phases as they can occur frequently or during long periods. This in contrast with
traditional client-server systems where communication among machines can be expected
most of the time.



Furthermore, in the few cases where lack of communication is taken into consideration
and replication is used to increase availability, the legacy of the client-server model is still
there. For example, notebook users will try to connect to a remote, centralized server (e.g.
Lotus Notes), and the techniques for achieving data consistency often require a home site.

In this paper we claim that this “all-or-nothing” approach to replica control does not
exploit the full potential of distributed systems and mobile computing in particular. We
are prepared to sacrifice consistency for availability and allow replicas to fork new copies
or to merge with other replicas in a rather loose or autonomous way. Replication and
merging only require peer-to-peer communication. Our vision is that a replicated object
will eventually be consistent when all replicas finally merge. Strong consistency is replaced
by pair-wise convergence.

This work is in line with recent projects [3, 12, 10, 13, 9] that try to support a free
pattern of mobility where information can be exchanged whenever two hosts meet and
communication with a centralized network or server is only a special case of peer-to-peer
interaction. As a consequence, the focus now shifts from strong consistency among a
group of known replicas towards pair-wise consistency of information scattered through an
arbitrary number of replicas of an abstract entity.

Clearly, since applications are allowed to alter the state of the local replicas, one must
be sure that all replicas can in fact be merged without aborting operations or loosing any
of the updates made to the replicas. This is where specification comes in. In this paper
we present some abstract data types that guarantee pair-wise merging of the data. These
data types are composable, and can be used to build simple distributed applications that
explore the casual or deliberate encounter of mobile hosts.

The acceptable data types are strictly driven from the minimal requirements for per-
manent and unconstrained autonomous operation. Although the resulting valid data types
are not suitable for aplications with strong consistency needs, they introduce vast possi-
bilities of information sharing and re-integration for areas such as: Personal information
management applications on small pocket devices that have traditionally a policy of no-
sharing and permanent availability, for example, phonebooks, organizers; Convergence of
legacy distributed data (generated by user mobility) that can conform to a suitable merge
semantics, for example, bookmarks, mailboxes, newsrc; New mobile applications that aim
at permanent availability and tailor their shared data types under this minimal model.

2 Environment

We will model the autonomous incorporation of information on replicas of a given abstract
entity. Each replica should, at any time, be able to derive new replicas and each two
replicas should be capable of converging into a new replica.



2.1 Description

Consider one replicated abstract entity £ to which we associate a possibly infinite set of
replicas R(E). At any given time we will have k replicas that belong to the set of all
potential replicas of E, {e1, -, e} C R(F). The abstract entity F represents the concept
that is replicated, for instance “The 5 banks with the best interest for house loans” or
“The set of known prime numbers”.

Each replica is bound to a abstract entity, has a unique identifier, conforms to a given
abstract data type (shortly type) and stores data that conforms to a state description in
the type, Replica = Entity x Type x Id x Storage. A type defines the replica state and
signature, and specifies operations in terms of manipulations of the state, input elements
and output elements, T'ype = Name x Sig x StateDef x OpsDe f*.

There is a one-to-many (or at least one-to-one) relationship from Entity to Replica and
from Type to Replica. Replicas of the same type can model different abstract entities.
For instance, the two entities “The set of known prime numbers” and “The set of known
composite numbers” could be modeled by the same ADT, one that stores growing sets of
positive integers.

A initial replica can be created by a special operation Init that constructs a replica
from a abstract entity and a type (we will assume, conceptually, that all replicas of a given
entity will derive from a single initial replica, although, in practice, for some data types
we can autonomously create new replicas. c.f. IncSet)

Init: A special operation Init defined on each type creates a initial replica e; from a
type T and a abstract entity E. This is denoted by I&(T’Egl .

This operation adds e; to the pool of existent replicas. Physically the pool of replicas
can be scattered through different locations and each replica is represented by a finite data
sequence (for instance, like marshaled object instances).

Replicas do not have processing capability. In order to change the information stored
on a replica a process must be associated to it and apply an operation on the replica. We
do not force replicas to be associated to specific mobile nodes, so any mobile node can
actuate on any replica and, consequently, the replica identity must be independent of the
mobile node identity. When an operation is applied to a replica the replica might change,
by changing its Storage, to accomodate the new information. This derives a non-strict
partial order, denoted by <, which expresses incorporation of information!, mapping the
evolution of the state stored at the replicas.

Each type defines the < relation by a boolean valued operation Leq that relates two
replicas. This operation allows the validation of the ADT operations on respect to the
partial order requirements that will be expressed.

We can now define incorporation.

Incorporation: Given a replica e,, by issuing an operation op on this replica and

!This evolution of the replica state by incorporation of information also occurs when joining replicas
with diferent states, as will be explained latter when introducing the join operation.



now referring the replica as €l, to indicate the potential change on the storage, we have the

transformation e, oplez) e and say that e, = e’ .

The Storage is the only replica section allowed to change by incorporations, and these
changes might not affect the outcome of the Leq evaluation. Some operations (read-only
operations) might not even change the Storage. Thus incorporation is not required, or
expected, to derive a strict partial order <.

The binary relation < on replicas, being a non-strict partial order, holds the normal
reflexivity, antisymmetry and transitivity conditions. Equality of replicas, denoted
by the binary relation ~~, is driven from the antisymmetry condition, since e, < e,Ae, < e,
implies e; ~ e,.

Each replica can produce new replicas by the special operation Fork denoted by the
symbol x and defined on the replica type. The replica that receives this operation ceases
to exist and two replicas are generated.

Fork: Issuing a special operation X on a replica e;, this replica is replaced by two new
replicas ey and e, which is denoted by e, &)ek, e, s0 that ej ~ e, ~ ¢;.

Forking preserves the Storage and consequently the outcome of the Leq operation. We
denote this by relating the equivalent states by ~.

It is now appropriate to say that not all replicas need a unique Id, the behavior of some
types allows Init special operations that generate a undefined id L. These undefined ids
are kept upon forks. On the other hand, those types that require unique ids must derive
the adequate ids on their definition of the special Fork operation.

The convergence of replicas is achieved by the operation Join, denoted by the symbol +,
and also defined on the type associated to the replica. When two replicas join, they cease
to exist and produce a new replica with a distinct identifier, or with undefined identifiers
(when applicable). The join of two replicas potentially creates a new Id and generates a
new Storage by applying a suitable merge to the two replicas Storage.

Join: Issuing a special operation + on any two replicas e, and e, we obtain a new
replica e, that is the simplest replica that incorporates the two replicas. This is denoted by

eme;r@ e, 80 that: e, e, Ney X e,; and Ve; e, <e;Ney 2 e =e, e

This definition of Join that computes a merge for all replica pairs is in fact the definition
of a join on a partially ordered set (traditionally written as 2V y for the join of the elements
X, y). Since we are able to derive the join of any two replicas, it defines a semi-lattice.
The existence of a lattice would require a meet for any two replicas, which is not relevant
for this concrete framework.

The axiomatization here introduced for the special operations {Init,Fork,Join} and
for normal operations on Incorporation, is strictly driven from the assumptions on the
underlying mobility pattern. The aim is to establish grounds for autonomous creation,
use, replication and convergence of replicas, under a minimal set of requisites.



These assumptions would also call for some extra properties that ensure that the two
special operations { Fork,Join} do not generate by themselves any information and that they
are immune to some order considerations. The interpretation of these additional properties
provides a sound modeling of the underlying environment, and remove indeterminism.

Since our definition of Join produces a join semi-lattice, these needed properties are in
fact normal laws of semi-lattices and do not need further proof.

Idempotence: +(x,x) ~ z, also written as ¢V o ~ x
Commutativity: +(z,y) ~ +(y, ), also written as t Vy ~yVx
Associativity: +(z, +(y, 2)) ~ +(+(z,y), 2), also written as z V (y V z) ~ (x Vy) V z

This Idempotence condition shows that the special operation Join does not introduce
spurious information when computing the merge of the two storages. Arbitrary sequences
of forks and joins with no interliving incorporations do not change the replica on respect
to the partial order. Commutativity and Associativity verification ensures that the order
in which joins are performed does not interfere with the final resulting merge when there
are no interliving incorporations.

Each ADT, once specified, can be verified for compliance with these properties. This
article will not deal with the verification process but a proof procedure for a concrete
component is sketched in appendix.

2.2 Additional assumptions

Together with a naming scheme that can autonomously assign new identifiers to the replicas
generated by the special operations, the assumed properties allow a replication environment
in which replicas can be stored on any persistent medium and supporting arbitrarily large
numbers of replicas than can be autonomously generated by iterated forking from any
replica.

In this framework we express that all collected information is relevant and that no two
replicas can collect conflicting information. We assume no other ordering to the operations
than registered causality (registered along forks, joins and incorporations). There is also
no concept of global time, although specific reconciliators could use time sources to merge
concurrent traces of operations?.

2.3 Trading strong consistency for permanent conflict free avail-
ability

Lack of strong consistency might appear as the major drawback of this environment, but
under unconstrained mobility it is not possible to have both strong consistency and per-
manent availability, and availability is the reason to carry a mobile device. There are no
bounds to the time that a mobile node can be outside a given network and information

2Naturally, this potential external time source (for instance, by having GPS time source on all processing
nodes) is not totally reliable and should not conflict with the registered causality.



exchange is likely to be limited to occasional peer-to-peer interactions. Although these
factors apparently restrict the set of applications that can operate in this environment, the
environment itself mirrors human centered interactions where users seldom have the need
for total consistency among the information they hold [12].

Applications for personal information management (PIM) have for long be used in small
handheld devices and rely almost completely on unshared information. Any amount of in-
formation sharing (replication of a common abstract entity) that does not hamper mobility
and constant availability can greatly improve the scope of traditional PIM applications.

The components and structuring properties presented in this paper allow the description
of complex convergent types. Any target application that can fit a potentially sharable
part of its data under this description is granted with the appropriate sharing and merging
mechanisms.

3 Classification

We will now present a set of components that respect the convergence properties introduced
in the previous section. The specification notation is adapted from the SETS Calculus [7, 8]
3 and models components by their state and by the operations that interact with the state.
The notation used under SETS is rooted on standard set-theory which should enable an
intuitive reading of the descriptions.

Component types are described under four sections, Type, Interface, State and
Model, which map the elements that define Type, respectively, Name, Sig, StateDef and
OpsDef*. These sections have the necessary information for generating Replica instances
with Entity, Type, Id and Storage.

The Type section introduces the name of the component, thus declaring a new type
name. Reuse of specifications along the hierarchy is done by adding “< SuperType” to the
type name, which indicates reuse of operation definitions from the ascending type chain.
Inherited operation definitions can be redefined on the subtype.

Replicas store the Type name and the FEntity name. These labels will not be treated
as first class entities on the component specifications to avoid cluttering the description,
since they are properties that are created with the initial replica and are fixed along the
replica’s life. However this labels can be accessed with two functions, with corresponding
names, type(...) and entity(...). Apart from some potential casting along types, that will
not be addressed, it is assumed that only replicas of the same Type and reflecting the
same FEntity are subject to joins and comparable. This is captured in a match function,
match(cy, co, V') 1 b = (type(c1) = type(cy) A entity(c,) = entity(cy)). In this notation b’ is
a output symbol that is computed from the inputs ¢; and c,.

The Interface section groups the signature of the normal operations that the type
holds, including the inherited ones (which are represented for better reading). These
signatures show the input and output arguments, but do not refer the component state.

3The SETS home page is at http://www.di.uminho.pt/ jno/html/setshp.html



State indicates a model for the Storage and Id. The Storage model is associated to the
symbol ¥, and the Id model to I.

Operations and special operations are grouped under the section Model and might
introduce input and output symbols, with output symbols decorated with a apostrofe.
The value of the Storage ( ¥ ) before and after the operation are respectively denoted by
o and o', and similarly + and /" are used for the Id ( I ) values.

Components are grouped on a hierarchy driven by the specification of their state (Stor-
age model).

4 Components

The components hierarchy is topped with the Basic component. This component hosts
a unstructured state (storage), and provides some basic functionalities common to all the
components. The supported operations ensure that the component is only replicated after
the state has been initialized. This component has no inspective operations defined. Thus
the first extension of this component, depicted in the Const component, adds a read
operation over the state.

Other extensions would permit changes to the state as long as the component has not
been replicated. Only under these conditions it is sound to keep the basic Join special
operation as defined in Basic.

4.1 Basic and Const components

Type: Basic
Interface:
Wrrite : Storage
State:
Y=X,I=Y
Model:
Init(o’, ")

post o/ = 1,// = L
Write(o,a,o’)
pre o = L
post o' =a

! ! / /
FO’I"k(O’,L,O’l,Ll,O'T,LT)
pre o # L
post o) =0, =0, =1, =1

Join(oy, vy, 00, tp, 0, 0")
pre o, = o,

pos o' =0, = o,
==,



One singular instance of Basic is symbolized by 7 and acts as a fixpoint for recursive
definitions of Join, r, Tﬂ T

When the symbol C' is used on a Storage model it symbolizes a polymorphic reference
to Basic. This reference is matched by any component, which means that it symbolizes
a generic placeholder for arbitrary instances, including 7. C' is used for type dependent
recursive invocations of the special operations Join and Fork, and is seen in the ConstSeq

and IncMap components.

Type: Const < Basic
Interface
Wrrite : Storage
Read :— Storage
State:
Y=X,I=Y
Model:
Read(o,a’)
pre o # L
post ' = o
LGQ(O'l, Or, bl)
o {al:aréb’:true
p else = b = false

Const replicas model the dissemination of constant information. This component is
useful when combined with other convergent components as it can model, for instance,
constant headers on mutable files (such as the 8 lines header and 1 line footer on the
Netscape bookmarks file).

The Const component inherits from Basic its four (3 special +1 normal) operations
and adds a Read operation. Notice that Basic does not assign unique identifiers (stored
under I) upon the special operations. In fact, most components do not need to distinguish
replicas, and not all components need the same level of labeling.

The ability to distinguish replicas is sometimes needed to identify their common past,
in order to avoid duplication of incorporated data (for instance due to non-idempotent
write operations). However, most of the ADTs presented here are immune to this opera-
tion duplication. By looking at the dependencies among the operations, we are currently
classifying the factors that bound the need to distinguish replicas.

4.2 Sets

This family groups components that are based on the functor 2 i.e. X — {0,1}, for finite
instances of X. As such this family works with subsets of X. Operations on these subsets
must be constrained in order to ensure convergence. From the possible components fitting
under this family we will concentrate on two particular cases, respectively a set that only
grows and a set that can model distributed mailbox handling.



These two sets redefine Init so that empty sets are the initial storage, this has the
consequence of inhibiting Write as its pre-condition is 0 = L. Nevertheless for shrink only
sets, which are not shown here, Write plays a central role on the set initialization.

Type: IncSet < Basic

Interface:

Insert : Elem

Find : Elem — Bool

State:

Y=2XT=Y

Model:

Init(o’, ")

post o' =0,/ =1

Insert(o,e,o")

post o' = o U {e}

Find(o,e,b')

post {eEa:>b':true
ed¢o="b = false

Join(oy, vy, 00, tr, 0, 0")

post o' = o, Uo,

==

LB(](O’Z,O'T, b,)
ost {al Co, = b =true
p else = b = false

Growing sets model situations where data is autonomously and incrementally gathered.
As expected all collected data is relevant, and upon a join the resulting replica holds all
elements. This component, in particular, starts with a empty set (defined upon Init) but
we could have a growing set that starts with any initial state supplied upon a singular
write operation?.

Most of these structures can grow indefinitely and thus lack some kind of growth control
policy. This depends on the application and can use techniques such as assigning time to
liwe stamps to the whole set or to the set elements, or by allowing the creation, at some
time, of a anihilater replica that will act as the absorbent element of the join.

Conceptually the next component, IncDecSet, is a single set when viewed through its
inspection operations, but its state integrates two sets.

Type: IncDecSet < Basic
Interface:

Insert : Elem

Erase : Elem

Find : Elem — Bool

4For this we would need some extra preconditions on the operations Insert and Find, and some other
minor changes.



State:

Y=2Xx2XT=Y

Model:

Init(o}, x oy, t')

post o;, X 0l,, =@ x @,/ =L
Insert(oin X Ogel, €,0%, X Odel)
post Ugn X Odel = (Uin U {6}) X Odel

Erase(oin, X 0gel, €, 0 X 0le;)

pre e € o,

post 0}, X gy = (0in \ {€}) X (04er U {€})
Fz’nd(ain X Odels €, b,)

ost | € € Tin = b = true

p ed oy = b = false

Join (o1, X 0145, Ory X Orgyys b, Ol X Ogest)

post Ugn x Ufzez = ((Ulm \Urdel) U (o7, \Uldel)) x (Uldel U Urdez)
V==

/
Leq(alzn X Ulde[ Y aTin X Urdel’ b )
alout g Urout /\ O’lln g O-Tin = b, == t’l"’u,e

t
POSY \ else = o = false

IncDecSets keep track of removals and ensures that we can only remove elements that
were in the inclusion set at the time of removal. This makes removal dependent from
insertion. When a replica that holds a given element meets one that knows of its removal
(which we know that is subsequent to the insertion) we can safely remove the element.

This data type can easily model a arbitrary group of mailboxes that potentially receive
the same set of messages (although allowing variable delays). The owner of the replicated
mailbox can read and delete any messages, knowing that the reconciliation procedure
ensures that the deletions are propagated and that any two mailboxes can synchronize to
share missing insertions and deletions.

This component could also be extended to model movement of messages from the
generic placeholder into folders, as long as this movement is one way only.

4.3 The Sequence Component

This component is based on the functor C* and models sequences of C' elements. We will
deal here only with constant well defined sequences of components®. Sequences are used a
general abstraction to n-ary cross products.

Cix--xC,cCC*

The structuring mechanism provided by sequences of heterogeneous components en-
ables the creation of compound structures from available components. These structures,

5Using a assymetric properties on replicas, such as primary replicas, we could mix n fixed sequences
with one growing sequence.

10



as expected, ensure well defined special operations by managing their delegation (with
potential recursion) to the resident components. By expressing generalized cross prod-
ucts this component controls the derivation of semi-lattices from products of semi-lattices,
which is a known property.

Each sequence of components must be formed prior to replication. Joining of sequences
is decomposed in the ordered pair-wise join of its components. The following specification
of a constant sequence is very simple, as it inherits from Const the blind initialization of
its state with Write. This means that the ConstSeq can only be replicated by Fork after
being initialized with a specific sequence of components, that will remain fixed thereof.
A more flexible, alternative, specification would allow the sequence to grow, by a Cons
operation that appends new components, as long as replication has not been initiated®.

Type: ConstSeq < Const
Interface:

Wrrite : Storage

Read :— Storage

State:
YX=C*"I=Y where C =X x I
Model:

Init(o’, ")

post o' = 1L,/ = L

Fork(o,t, 07,1}, 07.,1)

pre o # L

post with 1 < j <length(o) let o(j) = s(j) x i(5)

< 1+ Fork(s (j) i(5), 81575 er;“)>

< J
r i Fork(s(5),i(5), 51,11 87, 17.)

=1t =1
Join(oy, vy, 00, tp, 0, 0")
post with 1 < j <length(o;) = length(o,) let o;(j)
J
<Sl x i JOin(Sl(j)vil(j)vSr(j)vir(j)vslvil)>

= s1(4) xi(j), 00 (J) = sr(jJ) ¥ ir(5)

==

Leq(oy,0,,b')

post with 1 < j < length(o1) = length(o,) let 0u(j) = s1(5) x it(5), ov (§) = sr(4) x ir ()
. ) ) J
in b’ = /\] (ﬁ/ . Leq(sl(j),sr(j)a/g,)>

Sequences are represented as applications of a initial segment of IV into 7. Although
the sequence Id is undefined, its Storage stores whole components with the corresponding
Storage and Id. This was done explicitly in order to keep the same syntax (with six

6The reference implementation, in Java, for this component defines a initialization phase, prior to
replication, in wich the components are inserted in the appropriate order.

11



parameters) when defining and using the Fork and Join special operations.

4.4 Maps

From this family, of partial functions, we present a IncMap that will provide the second
structuring component. This component defines a partial function from components (keys)
to components, and normally should be used with Const components in its domain. Join-
ing of maps requires knowledge on the type of the actual components of each tuple image,
as only pairs of tuples with equal keys and matching elements on their image will perform
a join of the image elements to derive a new single tuple. This is supported by using both
the key and image type in the relation domain.

Type: IncMap < Basic
Interface:

Insert : Key x Component

Find : Key x Type — Component
State:
Y=XxT—=C,I=Y where C =X x 1
Model:

Init(o’, ")

post o/ =0,/ = L
Insert(o,k,c,o")

pre k X type(c) ¢ dom(o)

k x type(c))

to' =0U
posaa( .

Find(o,k x t,d)

pre k x t € dom(o)
post ¢ = o(k x t)
Fork(o,t,07,1},00,0))
pre o # L

post with a € dom(o) let o(a) = s(a) x i(a)

o a
ne (5; X i 3 Fork(s(a ,z'(a>,s;,z';,s;,z">>
, a
o = . . . .
r = s % Forb(s(@), i(a), s sy,
Y
y=1t =1
Join(oy, ty,0p, b, 07, 1)
post with a € (dom(o;) Ndom(o,)) let o;(a) = s;(a) X 3(a), 0. (a) = sr(a) X i, (a)
in o' =0y \ dom(o,) Uo, \ dom(o;) U

.U“ s x i Joz'n(sl(a),il(a),s,«(a),i,«(a),s’,z")>

12



a

¥ = dom(o) < domor) o )
pos Om(Ul) = Om(Ur) /\a ,3, . Leq(al(a),ar(a),ﬁ') we(dom(or)ndom(a))

Maps allow the definition of complex folded structures that can be used both to model
file systems and classification trees like the one that structures Netscape bookmarks. This
later case depicts one situation in which a strictly additive semantics is perfectly reasonable.

These reconciliation procedures can be used, both in applications that control their
replicated state from scratch in order to allow autonomous convergence, or in corrective
applications that converge replicas that were generated without support for future conver-
gence. Such cases can be seen on the common occurrence of replication of mailboxes and
browser bookmark files on mobile nodes and even among distant fixed nodes.

4.5 The Counter

We conclude the presentation of this sample of convergent components by showing a repli-
cated counter. Each replica of the counter is expected to autonomously collect increments.
Due to the lack of Idempotence among the Inc operations used on the counter, this com-
ponent must keep a partial track of its past segments of incorporations in order to avoid
duplication of increments upon rejoins.

The nature of the information that the Counter accumulates is different from the one
that the IncSet stores. The latter contains wuniversal information from which a single
item can be observed by many replicas, while the former has localized information for
which every observation is unique. This distinction can be derived from the existence or
not of idempotence among two subsequent incorporations of the same operation.

Type: IncNat
Interface:

Inc:

Count :— IN

State:

Y =2 IN,] =2*
Model:

Init(o’, ")

post o’ = ({),/' = ()
Inc(o,o’)

post o' =0 1 (,,5,1)

Fork(o,t,07,1;,0.,1)
post ¢} = cons(t,0),0) =0 U (Conso(b,O))

il = cons(i,1),0" = o U (¢"30Y)

Count(o,n')

;D .
post n’ = Zjedom(o) o(4)
. ! !

Join(oy, vy, oy try 0’y 1")
post o/ = oy Uo,, it =y

13



LB(](O’Z,O'T, b,)
o {algarib’:true
p else = bV = false

The relevant property of this component is that it redefines the Fork operation in order
to generate a unique identifier, of the form 2* each time it is replicated. The component
stores the active identifier and a map of identifiers to counters. Only the counter associated
to the active identifier is used”. Unlike some of the previous ones this component must
take part on the replication itself. This does not restrict replication but forces it to be
done at a high level i.e. blind duplication of the marshaled representation of the state is
no longer possible.

5 Related Work

Reconciliation of files according to their semantics was described in [9]. This work de-
scribed the reconciliation procedures that could automatically reconcile concurrent files
in the Ficus[4] peer-to-peer replicated file system. Our component description approach
can be used to model the specific reconciliators that where designed for the Ficus project.
Rumor([10] inherits Ficus legacy and proceeds in the trend to allow sharing of replicated
file systems under a model of unconstrained mobility similar to ours. Apparently Rumor
uses version vectors to keep track of conflicts between replicas, and in practice imposes a
limit of twenty replicas to handle the size of control data. Tracking all the dependencies
among operations done under un-hosted replication is no longer possible and requires a
labeling scheme that generalizes the notion of version vector to an unbound number of
autonomously generated replicas.

Bayou[13] presents a storage infrastructure for mobile applications where exchanges of
information is done with pair-wise communications. Operations such as writes are ordered
under a tentative order that can evolve into a committed order that is achieved by having
a primary replica at some specific server. Merging is done on a per-operation basis. When
new operations are received by pair-wise exchanges, they are checked for conflicts before
being applied. If a conflict arises then a specific merge procedure is executed for applying
an alternative incorporation of the conflicting operation. These merge procedures are
asymetric as they merge one operation into a tentatively ordered log of operations. This
system is somewhat more constrained, as it uses essentially hosted replication on servers
(which means that replicas are bound to those servers) but this is compensated by allowing
binding of clients to different servers.

The GIM replication system[12] made some steps on assessing that a communication
system based on autonomous merging and diffusion of replicas could be used to imple-
ment a shared appointment manager. This system used epidemic propagation of replicas
(which where the actual messages) between deposits and relied on version vectors for the

"The dagger 1 indicates the replacement, in the indexed relation, of the active tuple to apply its
incrementation.
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detection of concurrent replicas. Upon detection of concurrency an upcall was made to the
application so that it issued an appropriate merge that would superseed both.

Theoretical work on merging of software code[1] faces similar problems when modeling
processes of combining changes to programs, however the changes are often incompatible
and thus the model must handle reversal of changes which makes it substancially different
from our reconciliation model.

6 Conclusions

Replication is used to increase availability in distributed systems where disconnection or
network partitions are frequent. However, traditional replica control mechanisms such as
quorum consensus, primary replicas and other strong consistency approaches are unable
to provide a high level of availability on mobile environments. This papers describes an
environment where mobility is rather unconstrained because creation, use and joining of
replicas is done autonomously taking advantage of pair-wise communication. A formal
technique based on the SETS Calculus was used to specify composable components that
enjoy several properties which guarantee that pair-wise joining of replicas will lead to
eventual consistency. This allows the construction of complex structures that also ensure
convergence and shows the necessary properties that must be met by new components.
Component specifications can be checked for compliance with the environment by relating
them to the its rules, as is exemplified in the appendix.

This work proceeds in several fronts. On a practical side, several components, including
those presented here, have been implemented on a Java hierarchy and an intermediate
language was developed to give persistence to structured instances of components. A non-
trivial sample reconciliator was built for Netscape bookmarks by composing six different
component types, including Const, IncMap and ConstSeq and some new components. On
a more formal level, an attempt is being made to describe the semantic dependencies
of operations in the ADT’s signature in order to establish a technique for choosing the
appropriate state and order relation that conforms to our condition for unconstrained
mobility.
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A. Correctness of the IncSet component

Here we analyze the correctness of one component, the IncSet. Its specification is recalled
bellow after integrating the inherited operations.

Type: IncSet
State:
Y=2XT=Y
Model:
Init(o’, ")
post o' =0,/ = L
Insert(o,e,o")
post o' = o U {e}
Find(o,e,b')

ost {eEa:>b':true
p ed¢o="b = false
Fork(o,u,00, i, 01, )
pre o #1
post o) =0, =0, =1, =1
Join(oy, vy, 00, tp, 0, 0")
post o' = o, Uo,
==
LBQ(O'Z,O'T, b,)
01 Co, = b =true

t
POSE Y else = b = false

Verifying the partial order

Our first step is to check that the operator Leq defines a partial order over the elements
defined in the state. The state is specified as ¥ = 2% and defines subsets of elements from
a given set X. It is known [2] that for any set X, the powerset p(X), consisting of all
subsets of X, is ordered by set inclusion such that: for a,b € p(X), we define a < b if
and only if ¢ C b. From the definition of Leq it is clear that the order is based on the
relation C over sets. The three properties that define the partial order: (reflexivity) z < x;
(antisymmetry) z < y Ay < x = x = y; (transitivity) z < y Ay < z = x < z, are trivially
respected by the C relation on sets.

Checking operations against the Incorporation rule

Now that the order relation is established, we proceed to the analysis of the incorporation
operations with respect to the Incorporation rule that relates them to the order relation.

The Find operation does not change the state (no new o' is defined). All operations
that do not change the state fall under the reflexivity property, if a = b then a C b implying
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a < b, and thus fullfiling the Incorporation rule.

As for the Insert operation, it changes the state with the transformation o’ = o U {e}.
After the Init operation the state is oy = @ = {}. The insertion of a element e, by the
above transformation, derives a state oy = {e}. Clearly {} C {e} which implies that
< {e).

Subsequent insertions derive a state ;.1 from a state o; by applying the same trans-
formation and inserting a given element e. If e € o; then o; U {e} = 0; and thus o; = 0,4
that, again by reflexivity, leads to 0; C 0,41 = 0; < 0441 If e ¢ o0 it is still trivial that
0; C 0; U {e} which again leads to 0; C 0,41 = 0; < 0441.

Fork validation

The IncSet Fork operation was inherited from Basic and makes a simple copy of the state
by the transformation o; = o/ = 0. The Fork rule indicates that the resulting replicas are
related by ~ to the original replica.

Consider the relation a ~ b expressed as a < bA b < a and then as a CbA b C a. The
above transformation indicates that o, = o and thus substituting both a and b by o we
obtain ¢ C 0 A o C o which is a tautology. The same can be applied to o;, thus proving
the Fork rule.

Join validation

Here the Join operation is defined by the transformation ¢’ = 0;Uo, and must be validated
under the Join rule. This rule states that when obtaining e, by the Join operation over
two replicas e, and e,, two properties must be met: (i) e, < e, and e, < e,, (ii) Ve; : e, < ¢;
and e, =< e; implies that e, < e;.

The first property is here translated as e, C e, A e, C e, and then, by applying the
transformation, as oy C 0, U o, A 0, C 0; U0, which is a simple tautology.

The second property, when translated into the C relation, states that for any e; such
that e, C e; A ey C e; we must have e, C ¢;. By applying the transformation defined in
the Join operation we obtain: Vo, : 0, C 0; A 0, C 0; = 0, U o, C o0; which can be proved
as follows.

From the sub-expression o, C 0; A 0, C o0; we know that x € 0, = = € o0; and that
y € 0, = y € 0;. Considering an element z such that z € o, Uo,, we have z € o, V 2z € 0,.
Implying from above that z € o; V 2 € 0, so 2 € g;. Which proves z € o,U0o, = 2 € 0g;
and derives our goal o, U 0, C 0;.

Verification of the identifiers both in Fork and Join is not necessary since they do not
interfere with the order relation expressed in Leg.
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