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Furthermore, in the few cases where lack of communication is taken into considerationand replication is used to increase availability, the legacy of the client-server model is stillthere. For example, notebook users will try to connect to a remote, centralized server (e.g.Lotus Notes), and the techniques for achieving data consistency often require a home site.In this paper we claim that this \all-or-nothing" approach to replica control does notexploit the full potential of distributed systems and mobile computing in particular. Weare prepared to sacri�ce consistency for availability and allow replicas to fork new copiesor to merge with other replicas in a rather loose or autonomous way. Replication andmerging only require peer-to-peer communication. Our vision is that a replicated objectwill eventually be consistent when all replicas �nally merge. Strong consistency is replacedby pair-wise convergence.This work is in line with recent projects [3, 12, 10, 13, 9] that try to support a freepattern of mobility where information can be exchanged whenever two hosts meet andcommunication with a centralized network or server is only a special case of peer-to-peerinteraction. As a consequence, the focus now shifts from strong consistency among agroup of known replicas towards pair-wise consistency of information scattered through anarbitrary number of replicas of an abstract entity.Clearly, since applications are allowed to alter the state of the local replicas, one mustbe sure that all replicas can in fact be merged without aborting operations or loosing anyof the updates made to the replicas. This is where speci�cation comes in. In this paperwe present some abstract data types that guarantee pair-wise merging of the data. Thesedata types are composable, and can be used to build simple distributed applications thatexplore the casual or deliberate encounter of mobile hosts.The acceptable data types are strictly driven from the minimal requirements for per-manent and unconstrained autonomous operation. Although the resulting valid data typesare not suitable for aplications with strong consistency needs, they introduce vast possi-bilities of information sharing and re-integration for areas such as: Personal informationmanagement applications on small pocket devices that have traditionally a policy of no-sharing and permanent availability, for example, phonebooks, organizers; Convergence oflegacy distributed data (generated by user mobility) that can conform to a suitable mergesemantics, for example, bookmarks, mailboxes, newsrc; New mobile applications that aimat permanent availability and tailor their shared data types under this minimal model.2 EnvironmentWe will model the autonomous incorporation of information on replicas of a given abstractentity. Each replica should, at any time, be able to derive new replicas and each tworeplicas should be capable of converging into a new replica.
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2.1 DescriptionConsider one replicated abstract entity E to which we associate a possibly in�nite set ofreplicas R(E). At any given time we will have k replicas that belong to the set of allpotential replicas of E, fe1; � � � ; ekg � R(E). The abstract entity E represents the conceptthat is replicated, for instance \The 5 banks with the best interest for house loans" or\The set of known prime numbers".Each replica is bound to a abstract entity, has a unique identi�er, conforms to a givenabstract data type (shortly type) and stores data that conforms to a state description inthe type, Replica � Entity � Type� Id � Storage. A type de�nes the replica state andsignature, and speci�es operations in terms of manipulations of the state, input elementsand output elements, Type � Name � Sig � StateDef �OpsDef �.There is a one-to-many (or at least one-to-one) relationship from Entity to Replica andfrom Type to Replica. Replicas of the same type can model di�erent abstract entities.For instance, the two entities \The set of known prime numbers" and \The set of knowncomposite numbers" could be modeled by the same ADT, one that stores growing sets ofpositive integers.A initial replica can be created by a special operation Init that constructs a replicafrom a abstract entity and a type (we will assume, conceptually, that all replicas of a givenentity will derive from a single initial replica, although, in practice, for some data typeswe can autonomously create new replicas. c.f. IncSet)Init: A special operation Init de�ned on each type creates a initial replica ei from atype T and a abstract entity E. This is denoted by //

Init(T;E)e1 .This operation adds ei to the pool of existent replicas. Physically the pool of replicascan be scattered through di�erent locations and each replica is represented by a �nite datasequence (for instance, like marshaled object instances).Replicas do not have processing capability. In order to change the information storedon a replica a process must be associated to it and apply an operation on the replica. Wedo not force replicas to be associated to speci�c mobile nodes, so any mobile node canactuate on any replica and, consequently, the replica identity must be independent of themobile node identity. When an operation is applied to a replica the replica might change,by changing its Storage, to accomodate the new information. This derives a non-strictpartial order, denoted by �, which expresses incorporation of information1, mapping theevolution of the state stored at the replicas.Each type de�nes the � relation by a boolean valued operation Leq that relates tworeplicas. This operation allows the validation of the ADT operations on respect to thepartial order requirements that will be expressed.We can now de�ne incorporation.Incorporation: Given a replica ex, by issuing an operation op on this replica and1This evolution of the replica state by incorporation of information also occurs when joining replicaswith diferent states, as will be explained latter when introducing the join operation.3



now referring the replica as e0x to indicate the potential change on the storage, we have thetransformation ex //

op(ex) e0x , and say that ex � e0x.The Storage is the only replica section allowed to change by incorporations, and thesechanges might not a�ect the outcome of the Leq evaluation. Some operations (read-onlyoperations) might not even change the Storage. Thus incorporation is not required, orexpected, to derive a strict partial order �.The binary relation � on replicas, being a non-strict partial order, holds the normalre
exivity, antisymmetry and transitivity conditions. Equality of replicas, denotedby the binary relation ', is driven from the antisymmetry condition, since ex � ey^ey � eximplies ex ' ey.Each replica can produce new replicas by the special operation Fork denoted by thesymbol � and de�ned on the replica type. The replica that receives this operation ceasesto exist and two replicas are generated.Fork: Issuing a special operation � on a replica ej, this replica is replaced by two newreplicas ek and el, which is denoted by ej //

�(ej)ek; el , so that ej ' ek ' el.Forking preserves the Storage and consequently the outcome of the Leq operation. Wedenote this by relating the equivalent states by '.It is now appropriate to say that not all replicas need a unique Id, the behavior of sometypes allows Init special operations that generate a unde�ned id ?. These unde�ned idsare kept upon forks. On the other hand, those types that require unique ids must derivethe adequate ids on their de�nition of the special Fork operation.The convergence of replicas is achieved by the operation Join, denoted by the symbol +,and also de�ned on the type associated to the replica. When two replicas join, they ceaseto exist and produce a new replica with a distinct identi�er, or with unde�ned identi�ers(when applicable). The join of two replicas potentially creates a new Id and generates anew Storage by applying a suitable merge to the two replicas Storage.Join: Issuing a special operation + on any two replicas ex and ey, we obtain a newreplica ez that is the simplest replica that incorporates the two replicas. This is denoted byex; ey //

+(ex;ey) ez , so that: ex � ez ^ ey � ez; and 8ei : ex � ei ^ ey � ei )ez � ei.This de�nition of Join that computes a merge for all replica pairs is in fact the de�nitionof a join on a partially ordered set (traditionally written as x_y for the join of the elementsx, y). Since we are able to derive the join of any two replicas, it de�nes a semi-lattice.The existence of a lattice would require a meet for any two replicas, which is not relevantfor this concrete framework.The axiomatization here introduced for the special operations fInit,Fork,Joing andfor normal operations on Incorporation, is strictly driven from the assumptions on theunderlying mobility pattern. The aim is to establish grounds for autonomous creation,use, replication and convergence of replicas, under a minimal set of requisites.4



These assumptions would also call for some extra properties that ensure that the twospecial operations fFork,Joing do not generate by themselves any information and that theyare immune to some order considerations. The interpretation of these additional propertiesprovides a sound modeling of the underlying environment, and remove indeterminism.Since our de�nition of Join produces a join semi-lattice, these needed properties are infact normal laws of semi-lattices and do not need further proof.Idempotence: +(x; x) ' x, also written as x _ x ' xCommutativity: +(x; y) ' +(y; x), also written as x _ y ' y _ xAssociativity: +(x;+(y; z)) ' +(+(x; y); z), also written as x _ (y _ z) ' (x _ y) _ zThis Idempotence condition shows that the special operation Join does not introducespurious information when computing the merge of the two storages. Arbitrary sequencesof forks and joins with no interliving incorporations do not change the replica on respectto the partial order. Commutativity and Associativity veri�cation ensures that the orderin which joins are performed does not interfere with the �nal resulting merge when thereare no interliving incorporations.Each ADT, once speci�ed, can be veri�ed for compliance with these properties. Thisarticle will not deal with the veri�cation process but a proof procedure for a concretecomponent is sketched in appendix.2.2 Additional assumptionsTogether with a naming scheme that can autonomously assign new identi�ers to the replicasgenerated by the special operations, the assumed properties allow a replication environmentin which replicas can be stored on any persistent medium and supporting arbitrarily largenumbers of replicas than can be autonomously generated by iterated forking from anyreplica.In this framework we express that all collected information is relevant and that no tworeplicas can collect con
icting information. We assume no other ordering to the operationsthan registered causality (registered along forks, joins and incorporations). There is alsono concept of global time, although speci�c reconciliators could use time sources to mergeconcurrent traces of operations2.2.3 Trading strong consistency for permanent con
ict free avail-abilityLack of strong consistency might appear as the major drawback of this environment, butunder unconstrained mobility it is not possible to have both strong consistency and per-manent availability, and availability is the reason to carry a mobile device. There are nobounds to the time that a mobile node can be outside a given network and information2Naturally, this potential external time source (for instance, by having GPS time source on all processingnodes) is not totally reliable and should not con
ict with the registered causality.5



exchange is likely to be limited to occasional peer-to-peer interactions. Although thesefactors apparently restrict the set of applications that can operate in this environment, theenvironment itself mirrors human centered interactions where users seldom have the needfor total consistency among the information they hold [12].Applications for personal information management (PIM) have for long be used in smallhandheld devices and rely almost completely on unshared information. Any amount of in-formation sharing (replication of a common abstract entity) that does not hamper mobilityand constant availability can greatly improve the scope of traditional PIM applications.The components and structuring properties presented in this paper allow the descriptionof complex convergent types. Any target application that can �t a potentially sharablepart of its data under this description is granted with the appropriate sharing and mergingmechanisms.3 Classi�cationWe will now present a set of components that respect the convergence properties introducedin the previous section. The speci�cation notation is adapted from the SETS Calculus [7, 8]3 and models components by their state and by the operations that interact with the state.The notation used under SETS is rooted on standard set-theory which should enable anintuitive reading of the descriptions.Component types are described under four sections, Type, Interface, State andModel, which map the elements that de�ne Type, respectively, Name, Sig, StateDef andOpsDef �. These sections have the necessary information for generating Replica instanceswith Entity, Type, Id and Storage.The Type section introduces the name of the component, thus declaring a new typename. Reuse of speci�cations along the hierarchy is done by adding \< SuperType" to thetype name, which indicates reuse of operation de�nitions from the ascending type chain.Inherited operation de�nitions can be rede�ned on the subtype.Replicas store the Type name and the Entity name. These labels will not be treatedas �rst class entities on the component speci�cations to avoid cluttering the description,since they are properties that are created with the initial replica and are �xed along thereplica's life. However this labels can be accessed with two functions, with correspondingnames, type(: : :) and entity(: : :). Apart from some potential casting along types, that willnot be addressed, it is assumed that only replicas of the same Type and re
ecting thesame Entity are subject to joins and comparable. This is captured in a match function,match(c1; c2; b0) : b0 = (type(c1) = type(c2) ^ entity(c1) = entity(c2)). In this notation b0 isa output symbol that is computed from the inputs c1 and c2.The Interface section groups the signature of the normal operations that the typeholds, including the inherited ones (which are represented for better reading). Thesesignatures show the input and output arguments, but do not refer the component state.3The SETS home page is at http://www.di.uminho.pt/~jno/html/setshp.html6



State indicates a model for the Storage and Id. The Storage model is associated to thesymbol �, and the Id model to I.Operations and special operations are grouped under the section Model and mightintroduce input and output symbols, with output symbols decorated with a apostrofe.The value of the Storage ( � ) before and after the operation are respectively denoted by� and �0, and similarly � and �0 are used for the Id ( I ) values.Components are grouped on a hierarchy driven by the speci�cation of their state (Stor-age model).4 ComponentsThe components hierarchy is topped with the Basic component. This component hostsa unstructured state (storage), and provides some basic functionalities common to all thecomponents. The supported operations ensure that the component is only replicated afterthe state has been initialized. This component has no inspective operations de�ned. Thusthe �rst extension of this component, depicted in the Const component, adds a readoperation over the state.Other extensions would permit changes to the state as long as the component has notbeen replicated. Only under these conditions it is sound to keep the basic Join specialoperation as de�ned in Basic.4.1 Basic and Const componentsType: BasicInterface:Write : StorageState:� = X; I = YModel:Init(�0; �0)post �0 = ?; �0 = ?Write(�; a; �0)pre � = ?post �0 = aFork(�; �; �0l; �0l; �0r; �0r)pre � 6= ?post �0l = �0r = �; �0l = �0r = �Join(�l; �l; �r; �r; �0; �0)pre �l = �rpos �0 = �l = �r�0 = �l = �r 7



One singular instance of Basic is symbolized by � and acts as a �xpoint for recursivede�nitions of Join, �; � //

+(�;�) � .When the symbol C is used on a Storage model it symbolizes a polymorphic referenceto Basic. This reference is matched by any component, which means that it symbolizesa generic placeholder for arbitrary instances, including � . C is used for type dependentrecursive invocations of the special operations Join and Fork, and is seen in the ConstSeqand IncMap components.Type: Const < BasicInterfaceWrite : StorageRead :! StorageState:� = X; I = YModel:Read(�; a0)pre � 6= ?post a0 = �Leq(�l; �r; b0)post ��l = �r ) b0 = trueelse) b0 = falseConst replicas model the dissemination of constant information. This component isuseful when combined with other convergent components as it can model, for instance,constant headers on mutable �les (such as the 8 lines header and 1 line footer on theNetscape bookmarks �le).The Const component inherits from Basic its four (3 special +1 normal) operationsand adds a Read operation. Notice that Basic does not assign unique identi�ers (storedunder I) upon the special operations. In fact, most components do not need to distinguishreplicas, and not all components need the same level of labeling.The ability to distinguish replicas is sometimes needed to identify their common past,in order to avoid duplication of incorporated data (for instance due to non-idempotentwrite operations). However, most of the ADTs presented here are immune to this opera-tion duplication. By looking at the dependencies among the operations, we are currentlyclassifying the factors that bound the need to distinguish replicas.4.2 SetsThis family groups components that are based on the functor 2X i.e. X ! f0; 1g, for �niteinstances of X. As such this family works with subsets of X. Operations on these subsetsmust be constrained in order to ensure convergence. From the possible components �ttingunder this family we will concentrate on two particular cases, respectively a set that onlygrows and a set that can model distributed mailbox handling.8



These two sets rede�ne Init so that empty sets are the initial storage, this has theconsequence of inhibiting Write as its pre-condition is � = ?. Nevertheless for shrink onlysets, which are not shown here, Write plays a central role on the set initialization.Type: IncSet < BasicInterface:Insert : ElemFind : Elem! BoolState:� = 2X ; I = YModel:Init(�0; �0)post �0 = �; �0 = ?Insert(�; e; �0)post �0 = � [ fegFind(�; e; b0)post � e 2 � ) b0 = truee =2 � ) b0 = falseJoin(�l; �l; �r; �r; �0; �0)post �0 = �l [ �r�0 = �l = �rLeq(�l; �r; b0)post ��l � �r ) b0 = trueelse) b0 = falseGrowing sets model situations where data is autonomously and incrementally gathered.As expected all collected data is relevant, and upon a join the resulting replica holds allelements. This component, in particular, starts with a empty set (de�ned upon Init) butwe could have a growing set that starts with any initial state supplied upon a singularwrite operation4.Most of these structures can grow inde�nitely and thus lack some kind of growth controlpolicy. This depends on the application and can use techniques such as assigning time tolive stamps to the whole set or to the set elements, or by allowing the creation, at sometime, of a anihilater replica that will act as the absorbent element of the join.Conceptually the next component, IncDecSet, is a single set when viewed through itsinspection operations, but its state integrates two sets.Type: IncDecSet < BasicInterface:Insert : ElemErase : ElemFind : Elem! Bool4For this we would need some extra preconditions on the operations Insert and Find, and some otherminor changes. 9



State:� = 2X � 2X ; I = YModel:Init(�0in � �0del; �0)post �0in � �0del = ���; �0 = ?Insert(�in � �del; e; �0in � �del)post �0in � �del = (�in [ feg)� �delErase(�in � �del; e; �0in � �0del)pre e 2 �inpost �0in � �0del = (�in n feg) � (�del [ feg)Find(�in � �del; e; b0)post � e 2 �in ) b0 = truee =2 �in ) b0 = falseJoin(�lin � �ldel ; �l; �rin � �rdel ; �r; �0in � �0del; �0)post �0in � �0del = ((�lin n �rdel) [ (�rin n �ldel))� (�ldel [ �rdel)�0 = �l = �rLeq(�lin � �ldel ; �rin � �rdel ; b0)post ��lout � �rout ^ �lin � �rin ) b0 = trueelse) b0 = falseIncDecSets keep track of removals and ensures that we can only remove elements thatwere in the inclusion set at the time of removal. This makes removal dependent frominsertion. When a replica that holds a given element meets one that knows of its removal(which we know that is subsequent to the insertion) we can safely remove the element.This data type can easily model a arbitrary group of mailboxes that potentially receivethe same set of messages (although allowing variable delays). The owner of the replicatedmailbox can read and delete any messages, knowing that the reconciliation procedureensures that the deletions are propagated and that any two mailboxes can synchronize toshare missing insertions and deletions.This component could also be extended to model movement of messages from thegeneric placeholder into folders, as long as this movement is one way only.4.3 The Sequence ComponentThis component is based on the functor C� and models sequences of C elements. We willdeal here only with constant well de�ned sequences of components5. Sequences are used ageneral abstraction to n-ary cross products.C1 � � � � � Cn| {z } � C�The structuring mechanism provided by sequences of heterogeneous components en-ables the creation of compound structures from available components. These structures,5Using a assymetric properties on replicas, such as primary replicas, we could mix n �xed sequenceswith one growing sequence. 10



as expected, ensure well de�ned special operations by managing their delegation (withpotential recursion) to the resident components. By expressing generalized cross prod-ucts this component controls the derivation of semi-lattices from products of semi-lattices,which is a known property.Each sequence of components must be formed prior to replication. Joining of sequencesis decomposed in the ordered pair-wise join of its components. The following speci�cationof a constant sequence is very simple, as it inherits from Const the blind initialization ofits state with Write. This means that the ConstSeq can only be replicated by Fork afterbeing initialized with a speci�c sequence of components, that will remain �xed thereof.A more 
exible, alternative, speci�cation would allow the sequence to grow, by a Consoperation that appends new components, as long as replication has not been initiated6.Type: ConstSeq < ConstInterface:Write : StorageRead :! StorageState:� = C�; I = Y where C = �� IModel:Init(�0; �0)post �0 = ?; �0 = ?Fork(�; �; �0l; �0l; �0r; �0r)pre � 6= ?post with 1 � j � length(�) let �(j) = s(j)� i(j)in �0l = � js0l � i0l : Fork(s(j); i(j); s0l ; i0l; s0r; i0r)��0r = � js0r � i0r : Fork(s(j); i(j); s0l ; i0l; s0r; i0r)��0l = �0r = �Join(�l; �l; �r; �r; �0; �0)post with 1 � j � length(�l) = length(�r) let �l(j) = sl(j) � il(j); �r(j) = sr(j)� ir(j)in �0 = � js0 � i0 : Join(sl(j); il(j); sr(j); ir(j); s0; i0)��0 = �l = �rLeq(�l; �r; b0)post with 1 � j � length(�l) = length(�r) let �l(j) = sl(j) � il(j); �r(j) = sr(j)� ir(j)in b0 = Vj � j�0 : Leq(sl(j); sr(j); �0)�Sequences are represented as applications of a initial segment of IN into T . Althoughthe sequence Id is unde�ned, its Storage stores whole components with the correspondingStorage and Id. This was done explicitly in order to keep the same syntax (with six6The reference implementation, in Java, for this component de�nes a initialization phase, prior toreplication, in wich the components are inserted in the appropriate order.11



parameters) when de�ning and using the Fork and Join special operations.4.4 MapsFrom this family, of partial functions, we present a IncMap that will provide the secondstructuring component. This component de�nes a partial function from components (keys)to components, and normally should be used with Const components in its domain. Join-ing of maps requires knowledge on the type of the actual components of each tuple image,as only pairs of tuples with equal keys and matching elements on their image will performa join of the image elements to derive a new single tuple. This is supported by using boththe key and image type in the relation domain.Type: IncMap < BasicInterface:Insert : Key � ComponentF ind : Key � Type! ComponentState:� = X � T ,! C; I = Y where C = �� IModel:Init(�0; �0)post �0 = �; �0 = ?Insert(�; k; c; �0)pre k � type(c) =2 dom(�)post �0 = � [ � k � type(c)c �Find(�; k � t; c0)pre k � t 2 dom(�)post c0 = �(k � t)Fork(�; �; �0l; �0l; �0r; �0r)pre � 6= ?post with a 2 dom(�) let �(a) = s(a)� i(a)in �0l = � as0l � i0l : Fork(s(a); i(a); s0l; i0l; s0r; i0r)��0r = � as0r � i0r : Fork(s(a); i(a); s0l; i0l; s0r; i0r)��0l = �0r = �Join(�l; �l; �r; �r; �0; �0)post with a 2 (dom(�l) \ dom(�r)) let �l(a) = sl(a)� il(a); �r(a) = sr(a)� ir(a)in �0 = �l n dom(�r) [ �r n dom(�l) [Sa � as0 � i0 : Join(sl(a); il(a); sr(a); ir(a); s0; i0)��0 = �l = irLeq(�l; �r; b0) 12



post b0 = dom(�l) � dom(�r) ^Va � a�0 : Leq(�l(a); �r(a); �0)�a2(dom(�l)\dom(�r))Maps allow the de�nition of complex folded structures that can be used both to model�le systems and classi�cation trees like the one that structures Netscape bookmarks. Thislater case depicts one situation in which a strictly additive semantics is perfectly reasonable.These reconciliation procedures can be used, both in applications that control theirreplicated state from scratch in order to allow autonomous convergence, or in correctiveapplications that converge replicas that were generated without support for future conver-gence. Such cases can be seen on the common occurrence of replication of mailboxes andbrowser bookmark �les on mobile nodes and even among distant �xed nodes.4.5 The CounterWe conclude the presentation of this sample of convergent components by showing a repli-cated counter. Each replica of the counter is expected to autonomously collect increments.Due to the lack of Idempotence among the Inc operations used on the counter, this com-ponent must keep a partial track of its past segments of incorporations in order to avoidduplication of increments upon rejoins.The nature of the information that the Counter accumulates is di�erent from the onethat the IncSet stores. The latter contains universal information from which a singleitem can be observed by many replicas, while the former has localized information forwhich every observation is unique. This distinction can be derived from the existence ornot of idempotence among two subsequent incorporations of the same operation.Type: IncNatInterface:Inc :Count :! INState:� = 2� ,! IN; I = 2�Model:Init(�0; �0)post �0 = �hi0�; �0 = hiInc(�; �0)post �0 = � y � ��(�)+1�Fork(�; �; �0l; �0l; �0r; �0r)post �0l = cons(�; 0); �0l = � [ �cons(�;0)0 ��0r = cons(�; 1); �0r = � [ �cons(�;1)0 �Count(�; n0)post n0 =Pj2dom(�) �(j)Join(�l; �l; �r; �r; �0; �0)post �0 = �l [ �r; �0 = �l 13



Leq(�l; �r; b0)post ��l � �r ) b0 = trueelse) b0 = falseThe relevant property of this component is that it rede�nes the Fork operation in orderto generate a unique identi�er, of the form 2� each time it is replicated. The componentstores the active identi�er and a map of identi�ers to counters. Only the counter associatedto the active identi�er is used7. Unlike some of the previous ones this component musttake part on the replication itself. This does not restrict replication but forces it to bedone at a high level i.e. blind duplication of the marshaled representation of the state isno longer possible.5 Related WorkReconciliation of �les according to their semantics was described in [9]. This work de-scribed the reconciliation procedures that could automatically reconcile concurrent �lesin the Ficus[4] peer-to-peer replicated �le system. Our component description approachcan be used to model the speci�c reconciliators that where designed for the Ficus project.Rumor[10] inherits Ficus legacy and proceeds in the trend to allow sharing of replicated�le systems under a model of unconstrained mobility similar to ours. Apparently Rumoruses version vectors to keep track of con
icts between replicas, and in practice imposes alimit of twenty replicas to handle the size of control data. Tracking all the dependenciesamong operations done under un-hosted replication is no longer possible and requires alabeling scheme that generalizes the notion of version vector to an unbound number ofautonomously generated replicas.Bayou[13] presents a storage infrastructure for mobile applications where exchanges ofinformation is done with pair-wise communications. Operations such as writes are orderedunder a tentative order that can evolve into a committed order that is achieved by havinga primary replica at some speci�c server. Merging is done on a per-operation basis. Whennew operations are received by pair-wise exchanges, they are checked for con
icts beforebeing applied. If a con
ict arises then a speci�c merge procedure is executed for applyingan alternative incorporation of the con
icting operation. These merge procedures areasymetric as they merge one operation into a tentatively ordered log of operations. Thissystem is somewhat more constrained, as it uses essentially hosted replication on servers(which means that replicas are bound to those servers) but this is compensated by allowingbinding of clients to di�erent servers.The GIM replication system[12] made some steps on assessing that a communicationsystem based on autonomous merging and di�usion of replicas could be used to imple-ment a shared appointment manager. This system used epidemic propagation of replicas(which where the actual messages) between deposits and relied on version vectors for the7The dagger y indicates the replacement, in the indexed relation, of the active tuple to apply itsincrementation. 14



detection of concurrent replicas. Upon detection of concurrency an upcall was made to theapplication so that it issued an appropriate merge that would superseed both.Theoretical work on merging of software code[1] faces similar problems when modelingprocesses of combining changes to programs, however the changes are often incompatibleand thus the model must handle reversal of changes which makes it substancially di�erentfrom our reconciliation model.6 ConclusionsReplication is used to increase availability in distributed systems where disconnection ornetwork partitions are frequent. However, traditional replica control mechanisms such asquorum consensus, primary replicas and other strong consistency approaches are unableto provide a high level of availability on mobile environments. This papers describes anenvironment where mobility is rather unconstrained because creation, use and joining ofreplicas is done autonomously taking advantage of pair-wise communication. A formaltechnique based on the SETS Calculus was used to specify composable components thatenjoy several properties which guarantee that pair-wise joining of replicas will lead toeventual consistency. This allows the construction of complex structures that also ensureconvergence and shows the necessary properties that must be met by new components.Component speci�cations can be checked for compliance with the environment by relatingthem to the its rules, as is exempli�ed in the appendix.This work proceeds in several fronts. On a practical side, several components, includingthose presented here, have been implemented on a Java hierarchy and an intermediatelanguage was developed to give persistence to structured instances of components. A non-trivial sample reconciliator was built for Netscape bookmarks by composing six di�erentcomponent types, including Const, IncMap and ConstSeq and some new components. Ona more formal level, an attempt is being made to describe the semantic dependenciesof operations in the ADT's signature in order to establish a technique for choosing theappropriate state and order relation that conforms to our condition for unconstrainedmobility.References[1] Valdis Berzins. Software merge: Semantics of combining changes to programs. ACM Trans-actions on Programming Languages and Systems, 16(6):1875{1903, November 1994.[2] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge UniversityPress, 1990.[3] Alan Demers, Karin Petersen, Mike Spreitzer, Douglas Terry, Marvin Theimer, and BrentWelch. The bayou architecture: Support for data sharing among mobile users. In IEEEWorkshop on Mobile Systems and Aplications, Computer Science Laboratory, Xerox PaloAlto Research Center, December 1994. 15
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A. Correctness of the IncSet componentHere we analyze the correctness of one component, the IncSet. Its speci�cation is recalledbellow after integrating the inherited operations.Type: IncSetState:� = 2X ; I = YModel:Init(�0; �0)post �0 = �; �0 = ?Insert(�; e; �0)post �0 = � [ fegFind(�; e; b0)post � e 2 � ) b0 = truee =2 � ) b0 = falseFork(�; �; �0l; �0l; �0r; �0r)pre � 6=?post �0l = �0r = �; �0l = �0r = �Join(�l; �l; �r; �r; �0; �0)post �0 = �l [ �r�0 = �l = �rLeq(�l; �r; b0)post ��l � �r ) b0 = trueelse) b0 = falseVerifying the partial orderOur �rst step is to check that the operator Leq de�nes a partial order over the elementsde�ned in the state. The state is speci�ed as � = 2X and de�nes subsets of elements froma given set X. It is known [2] that for any set X, the powerset }(X), consisting of allsubsets of X, is ordered by set inclusion such that: for a; b 2 }(X), we de�ne a � b ifand only if a � b. From the de�nition of Leq it is clear that the order is based on therelation � over sets. The three properties that de�ne the partial order: (re
exivity) x � x;(antisymmetry) x � y ^ y � x) x = y; (transitivity) x � y ^ y � z ) x � z, are triviallyrespected by the � relation on sets.Checking operations against the Incorporation ruleNow that the order relation is established, we proceed to the analysis of the incorporationoperations with respect to the Incorporation rule that relates them to the order relation.The Find operation does not change the state (no new �0 is de�ned). All operationsthat do not change the state fall under the re
exivity property, if a = b then a � b implying17



a � b, and thus full�ling the Incorporation rule.As for the Insert operation, it changes the state with the transformation �0 = � [ feg.After the Init operation the state is �0 = � = fg. The insertion of a element e, by theabove transformation, derives a state �1 = feg. Clearly fg � feg which implies thatfg � feg.Subsequent insertions derive a state �i+1 from a state �i by applying the same trans-formation and inserting a given element e. If e 2 �i then �i [ feg = �i and thus �i = �i+1that, again by re
exivity, leads to �i � �i+1 ) �i � �i+1. If e =2 �i it is still trivial that�i � �i [ feg which again leads to �i � �i+1 ) �i � �i+1.Fork validationThe IncSet Fork operation was inherited from Basic and makes a simple copy of the stateby the transformation �0l = �0r = �. The Fork rule indicates that the resulting replicas arerelated by ' to the original replica.Consider the relation a ' b expressed as a � b ^ b � a and then as a � b ^ b � a. Theabove transformation indicates that �r = � and thus substituting both a and b by � weobtain � � � ^ � � � which is a tautology. The same can be applied to �l, thus provingthe Fork rule.Join validationHere the Join operation is de�ned by the transformation �0 = �l[�r and must be validatedunder the Join rule. This rule states that when obtaining ez by the Join operation overtwo replicas ex and ey, two properties must be met: (i) ex � ez and ey � ez, (ii) 8ei : ex � eiand ey � ei implies that ez � ei.The �rst property is here translated as ex � ez ^ ey � ez and then, by applying thetransformation, as �l � �l [ �r ^ �r � �l [ �r which is a simple tautology.The second property, when translated into the � relation, states that for any ei suchthat ex � ei ^ ey � ei we must have ez � ei. By applying the transformation de�ned inthe Join operation we obtain: 8�i : �l � �i ^ �r � �i ) �l [ �r � �i which can be provedas follows.From the sub-expression �l � �i ^ �r � �i we know that x 2 �l ) x 2 �i and thaty 2 �r ) y 2 �i. Considering an element z such that z 2 �l [ �r, we have z 2 �l _ z 2 �r.Implying from above that z 2 �i _ z 2 �i, so z 2 �i. Which proves z 2 �l [ �r ) z 2 �iand derives our goal �l [ �r � �i.Veri�cation of the identi�ers both in Fork and Join is not necessary since they do notinterfere with the order relation expressed in Leq.
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