
Building Inverted Indexes Using Balanced Trees Over DHT
Systems

Nuno Lopes
PhD student

University of Minho - Portugal
nuno.lopes@di.uminho.pt

Carlos Baquero
University of Minho - Portugal

cbm@di.uminho.pt

Distributed Hash Table (DHT) systems are scalable
and efficient data structures for object storage and lo-
cation using a simple put/get interface. These systems
place objects over a very large set of hosts using a mul-
titude of algorithms in order to distribute objects uni-
formly among hosts using logarithmic (or lower) costs
for routing table sizes and message hops [1, 2]. How-
ever, these systems assume that object size (storage
load) and popularity (communication load) follow an
uniform distribution. When unbalanced data is used on
a DHT, hotspots are created at some specific (random)
hosts. Although one might argue that storage is not a
critical resource, due to the current trend on secondary
storage capacity, storing such large objects creates net-
work bottlenecks, which in turn may limit data avail-
ability on very large heterogeneous systems.

A typical example of unbalanced data is a textual in-
verted index created from a collection of documents.
When implementing an inverted index over a DHT sys-
tem directly, one maps index keywords to DHT keys
and their posting lists (document references) as the DHT
values associated with the keys. Since an inverted index
follows a Zipf distribution where some keywords are far
more popular than others, hosts which store the popu-
lar words will have far more load than the others [3].
Later implementations handle hotspots by using a ran-
dom factor at the DHT key in order to spread load over
a DHT range instead of assigning it to a unique key [4].
However, even when using this method there is the pos-
sibility of overloading individual DHT keys.

Having identified a limitation of current DHTs, the
inability to handle unbalanced data, we propose a new
algorithm to uniform both storage and network loads for
each DHT key. Our distributed algorithm is based on
balanced trees which were designed to split data into
bounded sized blocks while minimizing the number of
block accesses per operation. These design goals, which
were imposed by secondary storage, are also valid for
very large systems where network latency and band-
width are important limitations. Unlike other tree-based
routing infra-structures, which replace the DHT algo-
rithms, we designed our algorithm to use a key based
routing interface. Such decision allows our algorithm

to use any DHT system as a basic building block since
all these systems can provide a simple key based rout-
ing interface. Furthermore, by using a balanced tree
rather than a Prefix Hash Tree our data structure grows
as a function of the object size, creating well balanced
trees, instead of growing spuriously due to the unbal-
anced prefix variations of data [5].

Our algorithm is capable of storing unbalanced data
over a generic DHT without loosing scalability. By de-
ploying a well known structure, B+ trees, over generic
DHTs, we are building a generic index functionality that
can be used as a basic building block for new large-scale
P2P applications.

References

[1] A. Rowstron and P. Druschel, “Pastry: Scalable, de-
centralized object location, and routing for large-
scale peer-to-peer systems,” inProceedings of the
18th IFIP/ACM International Conference on Dis-
tributed Systems Platforms, (Germany), 2001.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A scalable content addressable net-
work,” in Proceedings of the ACM SIGCOMM’01
Conference, pp. 161–172, 2001.

[3] P. Reynolds and A. Vahdat, “Efficient peer-to-
peer keyword searching,” inProceedings of the
4th ACM/IFIP/USENIX International Middleware
Conference, (Brazil), 2003.

[4] C. Tang and S. Dwarkadas, “Hybrid global-local
indexing for efficient peer-to-peer information re-
trieval,” in Proceedings of First Symposium on Net-
worked Systems Design and Implementation, (San
Francisco, USA), March 2004.

[5] Y. Chawathe, S. Ramabhadran, S. Ratnasamy,
A. LaMarca, J. Hellerstein, and S. Shenker, “A case
study in building layered dht applications,” inPro-
ceedings of the ACM SIGCOMM’05 Conference,
pp. 97 – 108, 2005.


