
Privacy preserving gate counting with
collaborative Bluetooth scanners

Nelson Gonçalves1, Rui José2, and Carlos Baquero3

1 Universidade do Minho, Portugal,
2 Centro Algoritmi, Universidade do Minho, Portugal,

rui@dsi.uminho.pt

http://www.dsi.uminho.pt/~rui/
3 DI/CCTC, Universidade do Minho, Portugal,

cbm@di.uminho.pt

http://gsd.di.uminho.pt/cbm/

Abstract. Due to its pervasiveness and communication capabilities,
Bluetooth can be used as an infrastructure for several situated inter-
action and massive sensing scenarios. This paper shows how Bluetooth
scanning can be used in gate counting scenarios, where the main goal is
to provide an accurate count for the number of unique devices sighted.
To this end, we present an analysis of several stochastic counting tech-
niques that not only provide an accurate count for the number of unique
devices, but offer privacy guarantees as well.

Keywords: Privacy, Gate Counter, Bloom Filters, Hash Sketches

1 Introduction

As Bluetooth becomes more and more pervasive, there is a growing potential
to leverage on the possibilities offered by Bluetooth scanning as a flexible in-
frastructure for situated interaction and a general purpose platform for massive
sensing and actuation in urban spaces. Bluetooth sensing is based on a discovery
process through which a device can inquire about the presence of other nearby
devices. If those devices are in discoverable mode, they will respond with their
address, and possibly additional information, such as the device name, the device
type (e.g. cellphone or computer) and available services. A Bluetooth scanner
is a device that periodically scans nearby devices, registering and timestamping
the observations and making them available to other applications and systems.
Multiple Bluetooth scanners spread all over a city could thus serve as collection
points for Bluetooth sightings, providing a major tool for observing, recording,
modelling and analysing the city, physically, digitally and socially [8].

A large scale infrastructure of that nature is not likely to emerge as a single-
domain initiative. There would not be a killer application that could by itself
justify such huge investment. However, there is already a large number of Blue-
tooth scanners in urban environments. They are owned by many entities and



they serve very diverse purposes, such as proximity marketing, device localiza-
tion or OBEX-based interaction. These same scanners could be used, without
any additional cost, as nodes in a large scale collaborative sensing infrastructure.
Each node would still scan for its own purposes, but it would also share part of
the generated data with a central service that would then be able to produce
aggregate information of mutual interest. This collaborative path could enable
large scale Bluetooth sensing to quickly enter mainstream.

A major obstacle, however, is how to enable this type of large scale sensing
without creating an overwhelming privacy threat. A Bluetooth scanner registers
the Bluetooth addresses, 48-bit MAC, of the devices that have been sighted.
Some devices are able to switch between multiple Bluetooth addresses, but for
most cases this will be a reliable and permanent unique identifier for sighted de-
vices and by extension to the respective owners. While a single scan of proximate
devices is not in itself much of a problem, a systematic registration of Bluetooth
sightings, especially when done at multiple locations, would have the potential
to become a large scale tracking system. Relatively simple processes could be put
in place to detect the presence, movements and patterns of individuals as well
as co-location patterns between people. For privacy, a precautionary measure
should avoid permanent storage and dissemination of Bluetooth addresses.

1.1 Bluetooth-based collaborative gate counting

In this study, we address one of the most common forms of urban sensing: count-
ing unique visitors across multiple gate counters to measure the flow of people
across the urban setting. In this scenario, a potentially very large set of het-
erogeneous and autonomous nodes support the counting process by acting as
Bluetooth-based gate counters.

Conceptually, a gate is a virtual line across a street, and gate counting is
the process of counting the number of people crossing that line. Each Bluetooth
node is modeled as a gate counter that counts the number of unique Bluetooth
addresses observed during a certain period. The use of Bluetooth as an enabling
technology for gate counting has been extensively explored in [8] to establish the
flows of people at sampled locations within a city over the course of a day. A
Bluetooth-based gate counter does not really count all the persons passing-by,
but only those who are carrying discoverable Bluetooth devices. Still, this is
enough to make a reasonable correlation, using baseline data, to estimate the
overall traffic.

A Bluetooth-based gate counter needs to recognize subsequent sightings of
the same entity. Repeated sightings of the same device can be very common, not
only because people can be passing-by multiple times, but also because of persis-
tent devices. Instead of scanning through a line, discovery is actually performed
in an area and thus any device in that area, possibly in nearby buildings, would
be repeatedly discovered. Results from empirical studies with known static and
transient devices suggest that a transient device typically appears for up to 90
seconds while it crosses a gate [8]. A proper gate counting process would thus
needs to account for this and filter persistent devices.



A gate counter should also be able to answer questions like “how many dif-
ferent people were seen in a given gate in the last 24 hours ?” or “what was
the number of visitors of an amusement park during visitors peak hours?”. To
comply with this requirement, gate counters should be able to distinguish its
readings over time.

The main challenge, however, is how to enable collaborative counting be-
tween multiple independent gate counters, while providing appropriate privacy
guarantees as well as low communication costs. To be able to count unique en-
tities, we need to identify multiple counts of the same entity at different nodes,
to make sure that the same device sighted at two different gates will be counted
only once. Imagine, for example, a city festival with multiple gate counters op-
erating at various locations to count the number of visitors to the festival. The
simple sum of individual gate counts would clearly overestimate the number of
people since many of them would be spotted at multiple gates. We thus need
some technique that works across multiple gate counters and is able to provide
an aggregate count of the unique device addresses that have been spotted in the
entire set of gate counters. Comparing the plain addresses observed at different
gates would immediately solve this problem, but is not appropriate for privacy
preservation.

1.2 Objectives

In this paper, we explore the use of stochastic summarizing techniques as a
privacy preserving approach to enable Bluetooth-based gate counting of unique
entities across multiple nodes. The objective is to assess to what extent these
techniques are able to address the specific requirements of this distributed gate
counting model and inform the design of large scale Bluetooth sensing systems.

We have identified the sensing requirements for this scenario and established
a number of key criteria for assessing the various alternatives. We have then
conducted an experimental study in which we compared how multiple types of
stochastic summarizing techniques would behave across multiple variants of our
gate counting scenario. The results provide a strong foundation for the devel-
opment of these large scale Bluetooth sensing infrastructures, identifying major
trade-offs and the implications of key factors such as cardinality and support for
merge operations.

2 Probabilistic counters for privacy-enhanced gate
counting

A common strategy in privacy-enhancing techniques is to reduce the data col-
lected to what is absolutely needed for a particular purpose. In this gate counting
scenario, we need to count devices and the ability to check if a particular device
has already been counted before. Moreover, we need to be able to do this across
a set of autonomous nodes. This means that we are not interested in information
about the number or duration of sessions that each device generates at each gate.



Probabilistic counters provide an interesting solution to this problem. They
are flexible enough for estimating the overall number of unique sightings with
some controllable accuracy, without ever keeping the plain Bluetooth addresses.

In this section, we make a brief description of the algorithms that were im-
plemented and tested for the Gate Counter scenario.

2.1 Bloom Filters

Bloom Filters were created in 1970 [2] by Burton Howard Bloom. They are a
simple and memory efficient probabilistic data structure for set representation
where membership queries are allowed. A Bloom Filter consists in a bit array
(initially set to 0) and k consistent hash functions. Those hash functions are
used to map an element into several array positions. The bits at those positions
are then either set to 1 (in order to add the element to the Filter), or checked
to see if all are set to 1 (in case they are, the element is considered part of the
set). In short, the main properties of Bloom Filters are:

– Small memory footprint in comparison with the memory needed to represent
the actual set,

– The add and check membership operations have O(k) complexity, where k
is the number of hash functions, therefore independent from the number of
elements represented in the set.

– False positives are possible, but their occurrence can be controlled,
– No false negatives.

In this particular Gate Counter Scenario we used both the standard version
of Bloom Filters[2] and Scalable Bloom Filters [1]. Scalable Bloom Filters are a
variant of Bloom Filters that can dynamically adapt to the number of elements
stored while respecting a maximum false positive probability, which is chosen at
the beginning. Even though it’s not their main goal, Bloom Filters (and Scalable
Bloom Filters) can also be used to estimate the cardinality of multisets. This
is accomplished using the ratio of bits set to 1 in the bit array. The size m of
the bit array supporting the bloom filter is linear, O(N), with the number N of
elements to count.

2.2 Hash Sketches

Hash Sketches are a simple probabilistic data structure with which we can obtain
the cardinality of sets. Much like Bloom Filters there are several variants of this
algorithm. Despite being different, all of these variants have at least one bit
array and use some kind of hash function to map elements to positions in the
aforementioned array(s).

Hash Sketches have a small memory footprint, the ability to estimate the
cardinality in a single pass over the set, as well as O(1) complexity to add a new
element and O(m) complexity to estimate the cardinality (where m is the size
of the bit array).



In the Gate Counter Scenario, we tested several versions of sketches: LogLog
Sketches [3], HyperLogLog Sketches [7], Linear Counting Sketches [9], Robust In
Network Aggregation Linear Counting Sketches (RIA-LC) [5, 4] and Robust In
Network Aggregation Dynamic Counting Sketches (RIA-DC) [4].

LogLog Sketches are similar to the Probabilistic Counting algorithm pre-
sented in [6] since both use several small bit arrays (called buckets) instead of
a single bit array. The main difference is that LogLog Sketches are much less
memory consuming at the expense of some accuracy. Their name derives from
the fact that each small bit array has size close to log(log(N)), being N the
number of distinct elements. The estimate of the cardinality is obtained using
the average of the several small bit arrays.

HyperLogLog Sketches are an improvement over LogLogSketches. Using the
same number of bits as LogLog Sketches, HyperLogLog Sketches are able to
provide more accurate results. According to the authors in [7], this improvement
is accomplished by using harmonic means instead of geometric means in the
evaluation function.

Linear Counting Sketches use only a single bit array. Their name comes
from the fact that they have O(N) size, meaning their size grows linearly with
the number of distinct elements N . When compared to LogLog Sketches, in
Linear Counting Sketches the size is a drawback, but they work better for small
cardinality sets.

Both RIA-DC and RIA-LC sketches are based on the Linear Counting Sketches.
While RIA-LC can be seen as a slightly improved/simplified version of Linear
Counting Sketches, RIA-DC Sketches have the unique ability to merge sketches
of different sizes. However, this ability comes with a price. RIA-DC Sketches as-
sume that there is no overlap of elements belonging to different sketches, meaning
that if we merge two different RIA-DC sketches with elements in common, those
elements will be counted twice in the final aggregate.

3 Comparative Analysis

The presented techniques, should now be evaluated against the specific require-
ments of gate counting scenarios. Considering the requirements identified in sub-
section 1.1 we will now analyze the proposed techniques against the following
criteria: accuracy, size and aggregation.

3.1 Criteria

Accuracy With this criterion we want to evaluate the accuracy of the tech-
niques, their ability to count multiple sightings of the same device only once,
and the quality of their estimators. Setting the maximum standard error to 5%,
σ = 0.05, we measured for all techniques the relative error (root min squared
error) for a range of cardinalities, whose average of 100 runs is shown in Fig 2.



Size The size of the techniques is an important factor. The less space the tech-
nique requires, the lower will be both the costs of communication between BT
scanners and their memory requirements.

Regarding this criterion, we have 2 fundamentally different types of tech-
niques: dynamic techniques which consist of Scalable Bloom Filters and static
techniques comprising the rest. Static size techniques are techniques whose size
is set at the time of creation and cannot be changed afterwards. This means that
we must know the maximum number of unique devices to count before hand, or
at least, we must be able to assume an upper bound for that number. Dynamic
techniques on the other hand don’t have this drawback because they can adjust
to withstand arbitrarily large cardinalities. In practical terms this means that
for static size techniques, once we create an instance with a certain capacity it
is not possible to change that capacity afterwards, while for dynamic techniques
there is no such constraint.

To further help us in our analysis, we can look at Figures 3(a) and 3(b) which
respectively depict the number of bits required by each unique element and the
size spent by each technique for a range of cardinalities.

Aggregation The ability to merge counts is crucial for scenarios with multiple
gates. It is a key ingredient for obtaining the aggregate number of individuals
in a set of gates. The merge operation consists in either a bitwise OR operation
(Bloom Filters, Linear Counting, RIA-DC and RIA-LC sketches) or in a max
operation (HyperLogLog and LogLog sketches) of structures that make each
gate’s counter. In order to merge several gate counters, there are 2 conditions
that must be met: all counters must be instances of the same technique and every
instance must have the same parameters and capacity (equally sized bit arrays).
Meeting these conditions ensures that the same unique device will mark the same
positions in the several gate counters it crosses. Therefore after merging (bitwise
OR or max operation) the counters (Fig.1), it is possible to obtain the aggregate
number of unique elements without counting the same device repeatedly.

With the exception of Scalable Bloom Filters and RIA-DC sketches, all the
techniques presented here have the ability to merge, and therefore will not count
the same device more than once in aggregate counts. Scalable Bloom Filters lack
the ability to merge because their size varies dynamically with the number of
unique elements, therefore we cannot guarantee that the same unique device will
set the same positions for different filters. RIA-DC sketches might not provide
accurate aggregate results since the estimator considers there is no overlap of
elements between the different counters.

Aggregation is also important as a mean for answering time related ques-
tions like “how many different people were seen in a given gate in the last 24
hours ?” or “what was the number of visitors of an amusement park during vis-
itors peak hours?”. To answer these types of questions, it must be possible to
distinguish/segment counter readings over time. This can by accomplished by
sensor nodes periodically making a copy of their counters followed by a reset.
Those copies will keep the information about the unique devices sighted during



N0

N0

N0

Gate Counter A

Gate Counter B

Gate Counter C

N0

Merge
Operation

X Y X Y

Fig. 1. Merge Operation

a certain time period. For example, considering that the rate at which counters
are saved and reset would be 1 hour, the former question could be answered by
merging the 24 last saved counters. To answer the latter we would need to merge
the copies made during peak hours at the various nodes in the park.

To save some space we can use different time granularities, for instance, we
can merge all unique counters saved during a day and obtain the aggregate
count for the day, merge the counters from the last 7 days and get the aggregate
count for the week, and so forth. We just need to keep in mind that because of
the merge restrictions, the size of the counter that stores the unique number of
devices sighted during an hour has to big enough to fit the number or unique
devices seen during the entire week.

As we can see both time segmentation and aggregate counting are in fact
variations of the same problem, which can only be solved with techniques that
support merging.

3.2 Analysis

Using the results from our benchmark4 shown in figures 2, 3(a) and 3(b) and
having explained the different criteria we can now analyze each one of the tech-
niques.

– Standard and Scalable Bloom Filters provide good accuracy for all the
scenarios presented in Fig.2, never surpassing the stipulated relative error.
However, they are the most expensive techniques regarding processing time
and the number of bits required per element.

– LogLog and HyperLogLog Sketches have very low accuracy for small
cardinalities, that is the reason they are not visible in Fig.2(a). Apart from

4 Our Benchmark was built in Python, including the implementation of the several
algorithms, with the exception of Bloom Filters where we used Jay Baird’s imple-
mentation.



20 40 60 80 100
Cardinality

0.000

0.025

0.050

0.075

0.100

E
rr

o
r

(a) Upper bound 102

200 400 600 800 1000
Cardinality

0.000

0.025

0.050

0.075

0.100

E
rr

o
r

(b) Upper bound 103

2000 4000 6000 8000 10000
Cardinality

0.000

0.025

0.050

0.075

0.100

E
rr

o
r

(c) Upper bound 104

20000 40000 60000 80000 100000
Cardinality

0.000

0.025

0.050

0.075

0.100

E
rr

o
r

LogLogSketch
HyperLogLogSketch
RIA LC Sketch
RIA DC Sketch
LCounter
BloomFilter
ScalableBloomFilter

(d) Upper bound 105

Fig. 2. Relative error of the several techniques using various upper bounds



20000 40000 60000 80000 100000
Cardinality

0

10

20

30

40
si

ze
 r

e
q
u
ir

e
d
 (

b
it

s)

LogLogSketch
HyperLogLogSketch
RIA LC Sketch
RIA DC Sketch
LCounter
BloomFilter
ScalableBloomFilter

(a) Number of bits per element used by each tech-
nique at different cardinalities

0 20000 40000 60000 80000 100000
Cardinality

102

103

104

105

106

107

si
ze

 r
e
q
u
ir

e
d
 (

b
it

s)

(b) Size of the several techniques for different cardi-
nalities

Fig. 3. Size benchmarks

this issue, both these techniques are the best suited for large cardinalities
due to their logarithmic growth in size (for cardinalities above 10000 these
are the techniques that require less space). Between the two, HyperLogLog
sketches have the advantage of being more accurate and of having a smaller
variability.

– Linear Counting Sketches have the same good all around accuracy as
Bloom Filters spending only a little more memory than LogLog sketches,
therefore drawing the best from each technique.

– RIA-LC and RIA-DC Sketches, being based on Linear Counting Sketches,
it is no surprise these techniques have good accuracy results. Furthermore
and like their ancestor, they also achieve good results in the bits per element
ratio.

Taking into account all that has been said, there are a few conclusions to
be drawn. For scenarios where we cannot make assumptions on the maximum
number of elements to count, we have to use Scalable Bloom Filters. For sce-
narios where there is a big discrepancy between the cardinalities of different
counters and where the existence of repeated elements outside each counter can
be neglected, RIA-DC Sketches are probably the best choice. For scenarios with
very large cardinalities HyperLogLog Sketches are probably the correct choice
since they are the most space efficient technique. Considering the expected most
common scenarios, where we need accurate aggregate counts and where there is
the possibility of counters with low cardinalities, the choice falls either within
Linear Counting Sketches or RIA-LC Sketches. We prefer the latter since it is a
slightly simplified version of the former.

As a final remark, we should emphasize the fact that all the techniques dis-
cussed in this article are more efficient (check Fig.3(a)) in terms of space than
storing each unique device MAC address(48 bits).



4 Conclusion

Bluetooth devices are pervasive in most societies and the number of unique
Bluetooth sightings is an adequate proxy for the number of actual individuals
present. The trivial approach of collecting and counting the set of detected Blue-
tooth MAC addresses is not adequate, in most settings, both in terms of privacy
concerns, system scalability and adequacy to devices with limited memory.

In this article we described and benchmarked a set of stochastic summarizing
techniques that can be applied to the gate counting problem. By using these
techniques our approach ensures the privacy of the users since Gate Counters
don’t store any extra raw information, i.e, the raw information that they keep
at any given moment is also present in the Bluetooth network.

Furthermore, the analysis of these techniques and their trade-offs should help
to determine the most adequate solutions for a specific gate counting scenario.
We also hope to have motivated the community to the relevant role of stochastic
counting techniques in privacy preserving gate counting.

Acknowledgments

This research has received funding from FCT under the Carnegie Mellon - Por-
tugal agreement. Project Wesp (Grant CMU-PT/SE/028/2008).

References

1. Almeida, P.S., Baquero, C., Preguiça, N.M., Hutchison, D.: Scalable bloom filters.
Information Processing Letters 101, 255–261 (2007)

2. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM 13(7), 422–426 (1970)

3. Durand, M., Flajolet, P.: Loglog counting of large cardinalities. Algorithms-ESA
2003 pp. 605–617 (2003)

4. Fan, Y.C., Chen, A.L.P.: Efficient and robust schemes for sensor data aggregation
based on linear counting. IEEE Trans. Parallel Distrib. Syst. 21, 1675–1691 (2010)

5. Fan, Y., Chen, A.: Efficient and robust sensor data aggregation using linear counting
sketches. IPDPS 2008. IEEE International Symposium on Parallel and Distributed
Processing, 2008 pp. 1–12 (2008)

6. Flajolet, P., Nigel Martin, G.: Probabilistic counting algorithms for data base ap-
plications. Journal of Computer and System Sciences 31(2), 182–209 (1985)

7. Éric Fusy, G, O., Meunier, F.: Hyperloglog: The analysis of a near-optimal cardi-
nality estimation algorithm. In: In AofA ’07: Proceedings of the 2007 International
Conference on Analysis of Algorithms (2007)

8. O neill, E., Kostakos, V., Kindberg, T., Schiek, A., Penn, A., Fraser, D., Jones, T.:
Instrumenting the city: Developing methods for observing and understanding the
digital cityscape. UbiComp 2006: Ubiquitous Computing pp. 315–332 (2006)

9. Whang, K., Vander-Zanden, B., Taylor, H.: A linear-time probabilistic counting al-
gorithm for database applications. ACM Transactions on Database Systems (TODS)
15(2), 229 (1990)


