Convergent Data Types for Autonomous Operation

Carlos Baquero Francisco Moura

{cbm,fsm}@.di.uminho.pt
http://gama.di.uminho.pt/

Universidade do Minho, Portugal

Despite continuous advances in ubiquitous connectivity, autonomous operation is still needed
when availability is at issue. As a result, applications may generate or use local copies of data,
and thus replica consistency should be addressed. However, mobility precludes the use of most
of the well-known techniques for ensuring strong consistency, so much so that some applications
even choose to ignore the existence of replicas. For example, personal information managers, Mail
and News readers and Web browsers, often store persistent state in local files, but tacitly assume
a single copy.

This work addresses replica reconciliation taking advantage of pairwise encounters of replica
holders, in the line of Bayou and Ficus. It aims at creating a generic framework for reconciliation
of data that is concurrently updated by placing some restrictions on the data types that abstract
replicated data. In fact data types are restricted in order to completely avoid conflicts upon
reconciliation. Operations are allowed, at all times, over any replica. New replicas can be forked
at any time from a given replica. Any pair of replicas can be reconciled at any time, as long as
both are available for computing the reconciliation procedure, so that all replicas can eventually
converge.

Although these rules strongly constrain data types, they have the clear advantage of placing
no restrictions on the availability of data. For many cases this enables a degree of sharing for
environments that previously had no sharing at all. Sharing can be added to existing applications
by creating application-specific reconciliators.

We have identified several basic convergent data types, namely grow only sets and sets where
removals have priority over insertions. In addition, there are two structuring data types, simple
aggregation by cartesian products and grow only partial functions, that act as heterogeneous
containers and recursively apply the appropriate fork and merging procedures. This constrasts
with ad-hoc construction and enables the derivation of well-founded reconciliators.

A formal description of the underlying environment and data types can be obtained on the web
at http://www.di.uminho.pt/ cbm/ps/scadt3.ps. The present pool of data types holds enough
expressive power to construct reconciliators for Netscape folded bookmark files and for replicated
mail folders. We expect to apply this technique to the pairwise file reconciliators identified on
the Ficus and Coda optimistic mobile file systems. This will help to identify and introduce new
convergent data types.

The initial implementation test in C++ relied heavily on the STL, but the lack of adequate
support of runtime types for the generic containers suggested a more appropriate language. Java
was selected and the pool of data types was implemented on a Java class hierarchy. All instances
of these classes share the ability to fork new ones and to compute a join with another instance of
the same type.

In order to extend the support for duplication and reconciliation of aggregate convergent data
types to other languages, a simple intermediate language based on S-expression representations
was devised. The translation back and forth into this language follows the guidelines for Java
serialization and externalization but creates a language independent representation.

A package with the Java framework and an example reconciliator for Netscape bookmarks will
be made publicly available by the end of summer 1997.



