
Fast Estimation of Aggregates in Unstructured Networks

Carlos Baquero, Paulo Sérgio Almeida
DI/CCTC

Universidade do Minho
Braga, Portugal

{cbm,psa}@di.uminho.pt

Raquel Menezes
DMCT

Universidade do Minho
Guimarães, Portugal

rmenezes@dmct.uminho.pt

Abstract

Aggregation of data values plays an important role on
distributed computations, in particular over peer-to-peer
and sensor networks, as it can provide a summary of some
global system property and direct the actions of self-adaptive
distributed algorithms. Examples include using estimates
of the network size to dimension distributed hash tables
or estimates of the average system load to direct load-
balancing.

Distributed aggregation using non-idempotent functions,
like sums, is not trivial as it is not easy to prevent a
given value from being accounted for multiple times; this
is especially the case if no centralized algorithms or global
identifiers can be used.

This paper introduces Extrema Propagation, a proba-
bilistic technique for distributed estimation of the sum of
positive real numbers. The technique relies on the exchange
of duplicate insensitive messages and can be applied in flood
and/or epidemic settings, where multi-path routing occurs;
it is tolerant of message loss; it is fast, as the number of
message exchange steps equals the diameter; and it is fully
distributed, with no single point of failure and the result
produced at every node.

1. Introduction

Aggregation is recognized as an important building block
for distributed applications in peer-to-peer or sensor network
infrastructures [18], [10], [11]. Aggregating data values can
provide a summary of some global system property and play
an important role in directing the actions of self-adaptive
distributed algorithms.

Examples can be found in the use of estimates of the
network size to direct the dimensioning of distributed hash
table structures [17], when setting a quorum for voting
algorithms [1], when estimates of the average system load
are needed to direct local load-balancing decisions or when
an estimate of the total disk space in the network is required
in a P2P sharing system.

Distributed computation of aggregation functions in a
network is not trivial. Unlike aggregation in a tree [13],

[12], where each value is guaranteed to contribute only once,
in a graph it is not easy to prevent a given value from
being accounted for multiple times; this is especially the
case if no centralized algorithms or global identifiers can
be used. Thus, calculating general non-idempotent functions
(e.g. COUNT, SUM, AVG) is problematic and we are restricted
to idempotent functions that are duplicate insensitive (e.g.
MIN, MAX) [15]. Aggregation functions that can be made
duplicate insensitive have the advantage of being usable
under multi-path routing.

This paper introduces Extrema Propagation, a technique
for distributed estimation of the sum of positive real num-
bers. It is a probabilistic technique that exchanges duplicate
insensitive messages and thus can be applied in flood and/or
epidemic settings, where multi-path routing occurs. It can
also be easily adapted to tolerate message loss.

Our results are similar to those in [14] as they improve
the sketching techniques in [7], [6] for sums of positive
integers, by allowing summing of positive reals. Contrary to
[14], whose estimator is biased and fixed to an exponential
distribution, we will show that the technique is generalized
to other distributions and will introduce an exponential
estimator that is unbiased and has tighter error bounds.

Extrema Propagation has some important properties: the
precision is controlled by message size, independently of
network size; it is fully distributed, with no single point of
failure, and the result is produced at every node. As a special
important case (and for presentation purposes) we show how
this technique can be applied to network size estimation.

2. Network Size Estimation

In order to simplify the description we concentrate on
a specific counting problem: How many nodes are present
in a given network? Moreover, we aim for a distributed
assessment of such estimate and to have it available at every
node after a short number of message exchange steps.

Our assumptions are: (1) Each node can communicate
with a set of neighbour nodes; (2) Each node has access
to a random number generator. We also make use of some
assumptions that, although not necessary for this class
of algorithms, simplify the presentation and analysis: (a)



messages are not lost or corrupted; (b) the network is static
and represented by a connected graph; (c) connections are
bidirectional (the graph is undirected). Message loss can
easily be tolerated since it only delays the availability of
the estimation.

2.1. Minimum Number of Steps Towards Estima-
tion

Our technique avoids the construction of a tree, and works
directly on an unstructured network where each node only
needs to know its neighbours. Let D be the network diame-
ter: the maximum length of the shortest paths between two
nodes in the graph. Tree construction over an unstructured
network would require a number of message exchange steps
proportional to D (between D/2 and D, depending on the
node chosen for the tree root). Subsequent aggregation along
the tree would again require an identical number of message
exchange steps. Moreover, such procedure would not tolerate
link failures and the calculated result would be available at
just a single node (the tree root, a single point of failure);
dissemination to other nodes would require further message
exchange steps. Therefore, making the result available at
every node would take at least 3D/2 steps in the best case.

A tree based algorithm cannot reach the theoretical lower
bound for the number of steps, which can be trivially shown
to be D, since obtaining at every node an estimate of the
number of nodes needs at least D message exchange steps.
Enough steps to exchange information among the two nodes
furthest apart.Thus, the fastest estimations cannot be done
in less than D steps (to be available at every node; it can
be made earlier at some nodes, and the average number of
rounds across the network can be less than D).

2.2. Synopsis of the Estimation Technique

Our approach to estimation is based on finding an idempo-
tent message structure that allows the counting of nodes. One
trivial approach would be the use of one unique identifier per
node (an additional assumption) and a protocol that collects
the set of all identifiers, aggregating by set union. Such a
protocol would provide an estimate in D steps, but creates
messages that are linear with the network size.

Our technique avoids the need for unique identifiers
and aggregate sizes which depend on network size [16].
It is based on idempotent operations on numbers, more
specifically the minimum function, and the use of statistical
inference.

The insight to our approach is the following: if we
generate a random real number in each node using a known
probability distribution (e.g. Gaussian or exponential), and
aggregate across all nodes using the minimum function, the
resulting value has a new distribution which depends on the
number of nodes.

The basic idea is then to generate a vector of random
numbers at each node, aggregate each component across the
network using the pointwise minimum, and then use the
resulting vector as a sample from which to infer the number
of nodes (by a maximum likelihood estimator).

We will show that if a vector of K numbers is generated
per node, it is possible to provide an estimate N̂ of the net-
work size N with a standard deviation of N/

√
K − 2. This

means that the relative accuracy can be chosen independently
of the network size, and is determined by K.

If we want to enforce a maximum relative error r = |N̂−
N |/N with a confidence of 95% we need to make K =
2 +

(
1.96

r

)2
. For example, for an error r = 10%, one needs

to make K = 387.
The focus of our technique is not accuracy but speed: we

do not aim for very low errors (e.g. 1% would lead to large
messages) but for a fast computation of an useful approxi-
mation that can serve as input to some other algorithm (in
some cases even 10% may be more than enough, only the
order of magnitude may be needed).

2.3. Extrema Propagation

The basic algorithm that every node runs is shown in
Algorithm 1. Each node maintains a vector x of K numbers,
initialized using function rExp(1), which returns a random
number with an exponential distribution of rate parameter 1.

Algorithm 1 Extrema Propagation
const K
var n, x[1..K]

Upon: Init
n← neighbours(self)
for all i ∈ 1..K do x[i]← rExp(1)
Send x to every p ∈ n

Upon: Receive m1..mj from all p ∈ n
for all l ∈ 1..j do
x← pointwisemin(x,ml)

end for
Send x to every p ∈ n

Upon: Query
return N̂(x)

The algorithm consists of a series of rounds towards
convergence. In each round every node sends a message
containing vector x to its neighbours, collects the corre-
sponding messages from its neighbours and computes the
pointwise minimum of x and all corresponding vectors
received, updating x with the result. Each node uses function
N̂(x), which takes as parameter the vector of K aggregated
minimums, and returns an estimation of the number of
participants (network size).

One important property of the algorithm is that a node
sends the same message to all its neighbours. This means



that broadcast facilities can be explored if available on the
underlying network protocols. This is relevant, for example
in sensor networks, where broadcast fits naturally and, due
to sharing in the physical medium, a unicast has the same
cost as a broadcast; algorithms that need to send a different
message to each neighbour are at a significant disadvantage.

3. Estimation Function

We first introduce the maximum likelihood estimator N̂F

used to estimate the unknown parameter N . We then proceed
with the theoretical study of its main properties, namely
bias and variance. The likelihood function is obtained from
the extreme value theory, which is a branch of statistics
dealing with the extreme deviations from the median of
probability distributions. The following results deal with
deviations imposed by the minimum function, but similar
results can be easily derived for the maximum.

Let Fmin(x) = 1 − (1 − F (x))N be the limiting distri-
bution for the minimum of a large collection X1, ..., XN

of random observations from the same arbitrary distribution
F (x) [8].

Proposition 1: Given a vector of K minimums
x[1], ..., x[K], which are observed values from Fmin(x)
distribution, then the maximum likelihood estimator for the
unknown parameter N is

N̂F = − K∑K
i=1 log{1− F (x[i])}

. (1)

Proof. The limiting density for the minimum is fmin(x) =
d
dxFmin(x) = Nf(x)(1 − F (x))N−1, where f(x) =
d
dxF (x). According to the likelihood method, we wish to
maximize the function L(N) =

∏K
i=1 fmin(x[i]), or equiva-

lently, to maximize logL(N) where logL(N) = K logN+∑K
i=1 log f(x[i]) + (N − 1)

∑K
i=1 log{1 − F (x[i])}. From

d
dN logL(N) = 0 one concludes that

N = − K∑K
i=1 log{1− F (x[i])}

.

2

We now concentrate on the special case of using the
exponential distribution for F (x) as it will lead to a simple
estimator. We will also derive an unbiased estimator for this
distribution. (The generic estimator N̂F above is not neces-
sarily unbiased.) We denote the exponential distribution with
rate 1 by Exp(1).

Now, F (x) = 1 − e−x, x ≥ 0 and the corresponding
estimator for N becomes

N̂Exp =
K∑K

i=1 x[i]
.

Moreover, Fmin(x) = 1 − e−Nx, x ≥ 0, is an exponential
distribution with rate N , denoted by Exp(N).

In order to correct the bias in N̂Exp there is a need for
an auxiliary lemma, which follows from a straightforward
application of Mathematical Statistics (see e.g. [9]).

Lemma 1: If X1, . . . , Xk are independent random vari-
ables (r.v.’s) from distribution Exp(N), then

a)
∑K

i=1Xi is a r.v. from a gamma distribution with
shape and scale parameters equal to K and N , re-
spectively.

b) Furthermore, the next expectation and variance hold:

E

[
1∑K

i=1Xi

]
=

N

K − 1

and

Var

[
1∑K

i=1Xi

]
=

N2

(K − 1)(K − 2)
− N2

(K − 1)2
.

It is now possible to introduce an unbiased estimator for
N .

Proposition 2: The estimator given by

N̂ =
K − 1
K

N̂Exp =
K − 1∑K
i=1 x[i]

(2)

is unbiased.
Proof. We need to prove that the expectation E[N̂ ] is equal
to N . Let Xi be the r.v. related to the observed value x[i].
First, by Lemma 1, one has

E[N̂Exp] = E

[
K∑K

i=0Xi

]
= K

N

K − 1

and
E[N̂ ] = E

[
K − 1
K

N̂Exp

]
= N.

2

Proposition 3: The variance of N̂ is given by

V ar[N̂ ] =
N2

K − 2
.

Proof. This proof is again straightforward from the appli-
cation of Lemma 1

Var[N̂ ] = (K − 1)2 Var

[
1∑K

i=1Xi

]
=

N2

K − 2
.

2

We now generalize this result so that one can estimate a
sum of positive reals. This new estimator can be applied
to a broad class of aggregations that can be expressed
by operations on sums, e.g. AVG. Here the variance is
determined by the magnitude of the sum that is to be
estimated.

Proposition 4: For 1 ≤ i ≤ N , let Xi be inde-
pendent r.v.’s from distribution Exp(λi) with λi > 0,
and minimum(X1, . . . , XN ) a new r.v. from distribution
Exp(

∑N
i=1 λi). Given a set of K minimums x[1], . . . , x[K],



which are observed values from Exp(
∑N

i=1 λi), then an
unbiased estimator for Sum =

∑N
i=1 λi is

Ŝum =
K − 1∑K
i=1 x[i]

with

V ar[Ŝum] =
Sum2

K − 2
.

Proof. The proof is straightforward from the proofs of
Propositions 2 and 3, renaming N to Sum. 2

For presentation purposes, the next section will con-
centrate on the practical properties and application of the
estimator for network size, N̂ . Nevertheless, most of the
analysis is also applicable to the more generic Ŝum esti-
mator and to other unbiased estimators that can be derived
from other probability distributions, e.g., uniform, Gaussian,
etc.

4. Binary Encoding

In some application contexts, e.g. mobile ad-hoc networks
and sensor networks, message size has an important practical
impact both in speed and energy consumption.

Although precision is dictated by the choice of K, there
are some relevant design decisions in the floating point
encoding of the numbers in the vector. It is intuitive to see
that, when aiming for a precision of only a few percent,
storing each value naively as a float or double would
probably be using a much higher precision than needed.
Therefore we tried encoding values with less precision.

After numerically studying several combinations of bit
allocations in a binary mantissa and exponent encoding
we have concluded that it is appropriate to store only
the exponent. Moreover, looking at values that occur in a
exponential distribution, and the way that they contribute to
the sum in the estimator, even though there can be more than
20 binary orders of magnitudes in the values that occur, a
range of only 9 values in the exponent contributes to 99.9%
of the result.

Table 1 shows the relative cumulative contribution of
values from higher to lower exponents occurring in a ex-
ponential distribution. The exponents shown, from 3 to -5
would be the ones contributing almost exclusively to the
sum, for N = 1 (1 node network). The distribution of
minimums for a N node network is also exponential, but
with the range of meaningful values scaled by 1/N . For
a given maximum N , we must use a range of exponents
that is 9 + log2(N). This leads to using 5 bits for storing
the exponent, to account for possibly large networks up to
about 8 million nodes: 5 bits gives a range of 32 for the
exponent; this means networks up to 232−9 = 223 nodes.
(Using 4 bits would only allow up to 216−9 = 27 = 128
nodes.)

Table 1. Relative cumulative contribution.

exponent contribution (%)
3 0.350
2 10.26
1 42.64
0 74.99

-1 91.54
-2 97.53
-3 99.33
-4 99.82
-5 99.95

Table 2. Scale factor s(K) and respective standard
deviation. 5 bits, base=2. Using 50 points and sample

repetitions per point.

K sample s(K) sd[s(K)]
10000 100 0.7212 0.0007
1000 1000 0.7212 0.0008
100 10000 0.7208 0.0008
10 100000 0.7161 0.0008

A given real value v in vector x is encoded by the
integer floor(log2 v), and when reconstructed becomes v =
2floor(log2 v). Likewise, the base 2 discretisation of vector x
is denoted by x.

Although N̂(x) was proved to be unbiased, the coarser
grain discretisation due to encoding introduces a bias in
N̂(x). This bias can be corrected as it is possible to calculate
a scale factor s(K) such that E[N̂(x)] ≈ E[s(K)N̂(x)].

We considered the possibility of choosing higher bases
for encoding, with the intent of reducing the number of bits
needed to encode the same range. We can observe that in
order to reduce one bit we need to square the base. However
the bias correcting scale factor for other bases b > 2 shows a
non negligible dependence on N , with a periodic oscillation
on logbN .

Calculation of the base 2 scale parameter s(K), was
performed numerically and is depicted in Table 2. This value
shows a slight dependence on K. This is due to a small
change in the shape of the distribution of N̂ for small values
of K, since the r.v. N̂ follows a Gamma distribution with
shape parameter K.

Since K is known and configured in the protocol, and
the relative periodic oscillations on N are less than 0.001
for base 2, one simply needs to pick the appropriate scale
factor for the used K. In short, under binary encoding the
estimator for N becomes:

s(K)
K − 1∑K
i=1 x[i]

,

where s(K) is the scale parameter for a given K as depicted
in Table 2.

From the results in Section 3 we can define a metric that
indicates the relative error of the estimation. The metric is



Table 3. Theoretical and average observed relative
errors. 5 bits, base=2. Using 200 points from N = 1 to

N = 220 and J samples per point.

K J TRE ORE
10000 10 0.0100 0.0098
1000 100 0.0316 0.0328
100 1000 0.1010 0.1047
10 10000 0.3535 0.3651

named TRE (Theoretical Relative Error) and is defined as
follows:

TRE =

√
V ar[N̂ ]

N
=

1√
K − 2

.

This metric indicates how the estimation deviates from N
as a proportion of N .

In order to numerically measure the quality of the es-
timator after encoded and scale corrected, we define the
following metric, named ORE (Observed Relative Error)

ORE =

√∑J

i=1(N̂i−N)2

J

N
,

where N̂i, for i = 1..J , is a set of observations of the
estimate of a given N . Both metrics are defined in terms
of the MSE (Mean Square Error), since Relative Error can
be seen as

√
MSE
N .

To obtain an average observed relative error over different
network sizes, we use 200 values of N ranging from
N = 1 to N = 220 ≈ 106; this gives us 10 values
for each cyclic oscillation. Table 3 shows how the values
for TRE and the average ORE compare, for different
K ∈ {10, 100, 1000, 10000} (with J samples for each N ).
We can conclude that for practical purposes the observed
values agree with the theoretical ones.

5. Message Loss and Slow Links

A strong point in our estimation technique is that it is
suitable to address scenarios where message loss can occur.
Contrary to techniques such as [10], which cannot afford
to lose messages, in ours the knowledge in each message
is made obsolete by subsequent ones: if a message from A
to B containing vector x is lost, a subsequent message will
have content y, where y ≤ x (in pointwise order).

This means that our algorithm can be easily modified
to deal with message loss. The algorithms presented send
a message to all neighbours and wait for messages from
all neighbours. This means that a single message loss will
deadlock the entire system. Some simple modifications to
deal with the problem are possible:

• A possibility is the use of a timeout. Normally the
algorithm would wait for messages from all neighbours,
but if more than some time elapsed, it would proceed
using the messages received so far.

• Another possibility is to design the algorithm to cope
with the failure of F messages, for small F like 1 or
2, and make it wait from messages from all neighbours
minus F .

The second variation is interesting in another point: it
would make the algorithm robust to slow links. Waiting from
all minus e.g. 1 neighbour means that if the last message
would take much more time to arrive it would not slow
down the starting of the next round. The vector in these late
messages could be accounted for (in the subsequent round)
in computing x, so that we do not ignore a node whose
messages are consistently the last one to arrive. The possible
increase in the number of rounds would be balanced by faster
rounds.

In these variations each message would be tagged with
a round number, to distinguish messages from the current
round from older rounds. A combination of these possibili-
ties would be to wait for all neighbours until a timeout and
then wait for all still missing minus F .

6. Related Work

The use of idempotent messages for duplicate insensitive
aggregations in sensor networks was presented on [5], [3],
[15]. These papers make use of a sketching technique de-
veloped by Flajolet and Martin in [7] and recently enhanced
in [6]. The technique, referred to as FM sketches, was
developed to estimate the number of distinct elements in
a multiset.

Our approach, building on extreme value statistics, oper-
ates in the real domain and can estimate sums of positive
reals. FM sketches, builds on the use of hash functions and
bitmaps and is a discrete technique than can estimate sums
of positive integers. It follows that FM sketches are less
general.

Although intrinsically different the two techniques have
important similarities. If K is the number of units dedicated
to the estimation, both estimate with a relative standard error
of roughly O(1/

√
K).

When considering the effect of binary encoding, we
observe that in [3], [5] the authors use the non enhanced
FM sketches and thus would only be able to encode in 5
bits a network size up to 25. For practical uses they would
need at least 16 bits per unit. Considering the enhanced
version of FM sketches in [6], one could expect in 5 bits
to be able to count up to 232 while we are limited to about
223. However it is not clear whether this version would be
adequate to estimate both small and large values of N , since
the technique was developed for large cardinalities.



The work on Separable Functions [14] was developed in
parallel with our work [2] and reaches an estimator which
is biased and does not converge to N but instead to K

K−1N ,
thus, it is less correct for small values of K. Both approaches
are related to earlier work on k-mins sketches [4], that
estimates the size of reachability sets in graphs.

7. Conclusions

We have introduced Extrema Propagation, a practical
approach to distributed aggregation, based on the use of the
statistical theory of extreme values. The resulting unbiased
estimators for exponential distributions lead to very simple
algorithms and efficient implementations. Being able to
estimate sums of positive reals, we are more expressive
than most previous approaches: our technique encompasses
summing naturals and counting, constituting an important
building block for the construction of aggregate functions.

The technique is fast: all nodes have correct estimates
after, at most, a number of communication steps equal to
the network diameter, and in this sense we operate at the
theoretical minimum.

In the algorithm a node sends the same message to all
its neighbours. This means that broadcast facilities can be
explored if available on the underlying network protocols.
This is relevant, for example in sensor networks where, due
to sharing in the physical medium, a unicast has the same
cost as a broadcast.

Useful estimates can be obtained using short messages;
we have shown that, in this context, only 5 bits are needed
to represent a floating-point number; an estimate with a 10%
error with 95% confidence can be obtained using around 240
bytes for the vector sent in a message.

Finally, Extrema Propagation possesses some interesting
properties: it is fully distributed with no single point of
failure and with the result produced at every node, it does
not require system-wide identifiers, and it is suitable to
tolerate message loss and slow links (by slight changes to
the algorithm).

References

[1] Ittai Abraham and Dahlia Malkhi. Probabilistic quorums for
dynamic systems. In Faith E. Fich, editor, DISC, volume
2848 of Lecture Notes in Computer Science, pages 60–74.
Springer, 2003.

[2] Carlos Baquero, Paulo Sérgio Almeida, and Raquel Menezes.
Extrema propagation: Fast distributed estimation of sums and
network sizes. Technical report, Universidade do Minho, May
2006.

[3] Mayank Bawa, Hector Garcia-Molina, Aristides Gionis, and
Rajeev Motwani. Estimating aggregates on a peer-to-peer
network. Technical Report TR-2003-24, Stanford University,
2003.

[4] Cohen. Size-estimation framework with applications to tran-
sitive closure and reachability. JCSS: Journal of Computer
and System Sciences, 55, 1997.

[5] Jeffrey Considine, Feifei Li, George Kollios, and John W.
Byers. Approximate aggregation techniques for sensor
databases. In ICDE, pages 449–460. IEEE Computer Society,
2004.

[6] Marianne Durand and Philippe Flajolet. Loglog counting of
large cardinalities (extended abstract). In Giuseppe Di Battista
and Uri Zwick, editors, ESA, volume 2832 of Lecture Notes
in Computer Science, pages 605–617. Springer, 2003.

[7] Philippe Flajolet and G. Nigel Martin. Probabilistic counting
algorithms for data base applications. J. Comput. Syst. Sci.,
31(2):182–209, 1985.

[8] E. J. Gumbel. Statistics of Extremes. Columbia University
Press, 1958.

[9] R. V. Hogg and A. F. Craig. Introduction to Mathematical
Statistics. Prentice-Hall, Upper Saddle River, New Jersey, 5th
edition, 1995.

[10] Márk Jelasity, Alberto Montresor, and Özalp Babaoglu.
Gossip-based aggregation in large dynamic networks. ACM
Trans. Comput. Syst., 23(3):219–252, 2005.

[11] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-
based computation of aggregate information. In FOCS, pages
482–491. IEEE Computer Society, 2003.

[12] Ji Li, Karen R. Sollins, and Dah-Yoh Lim. Implementing
aggregation and broadcast over distributed hash tables. Com-
puter Communication Review, 35(1):81–92, 2004.

[13] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein,
and Wei Hong. Tag: A tiny aggregation service for ad-hoc
sensor networks. In OSDI, 2002.

[14] Damon Mosk-Aoyama and Devavrat Shah. Computing sep-
arable functions via gossip. In Proceedings of the twenty-
fifth annual ACM symposium on Principles of distributed
computing, pages 113–122, July 2006.

[15] Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and
Zachary R. Anderson. Synopsis diffusion for robust aggre-
gation in sensor networks. In John A. Stankovic, Anish
Arora, and Ramesh Govindan, editors, SenSys, pages 250–
262. ACM, 2004.

[16] D. Psaltoulis, D. Kostoulas, I. Gupta, K. Birman, and A. De-
mers. Practical algorithms for size estimation in large and
dynamic groups. Technical report, University of Illinois,
Urbana-Champaign, 2004.

[17] Ion Stoica, Robert Morris, David R. Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable peer-to-
peer lookup service for internet applications. In SIGCOMM,
pages 149–160, 2001.

[18] Robbert van Renesse. The importance of aggregation. In
André Schiper, Alexander A. Shvartsman, Hakim Weath-
erspoon, and Ben Y. Zhao, editors, Future Directions in
Distributed Computing, volume 2584 of Lecture Notes in
Computer Science, pages 87–92. Springer, 2003.


